
Day 1 The co homologyof ConfulR
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In mostcases we can't visualise Confum if not anddimMS 1
Confum becomes 4dim

so to understand thespace a first step is to understand

its homology

We shall study the co homologyof ConfnIR

Why thistopic
H Confurd has a very pretty

combinatorial description

we'll get to see applications of useful geometric
topology techniques in computing it

Good prototypical example to understand homological
representation stability
H ConfulR is precisely purebraid grouphomology
H confulk is the homology of Sn
Generalisations RAAGS MCGS

Hyperplanecomplements
Little Disks Opered Er algebras

Minicourse Outline

Day Combinatorial Descriptionof H confnR2 and H confer
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H confnIR andTrees

Fifi
H confn 1221 no 1 dimstructure

view loops as particledances

EG citing i in

view this as a map
s Confn122

so get inducedmap
HiS1 Hi confn122

We can use this strategy to studyhigher degree Ha

HzConfnR2 2 dim structure

We can constructmaps
s xs confulk

And look at the imagesof inducedmap
2 s'xs HzConfnR2

Eg Eiii

Eg i.is
hi



HzConfn112

s xs xs confulk

fiiiiiii.in

Iii
So we're constructinghomologyclasses via orbiting planetsystems
Wecan representthese orbitingsystems usingtrees

Iiii I in Y Y

in

t.fii i
s Is

iiiiiiii.in E

in



internalvertices internalvertices ITI givesthehomologydegree

f eaves
root vertex

leavesgives the no ofparticles

Note We have so far only
describedsome homologygp

elements

We can get others by foreg taking
linear combinations ofthen

Turns out the above described classes generate all thehomology

But they havesome
relations between them i e they are not a

basis

Relations

Y p s
1

0 Antisymmetry

s
0 Jacobi

cohomology Graphs

How do we start thinking about H
Just for the purposesof this talk HK X HomHu X 21
In general we alwayshave a natural surjection HK

HomHa 2
which is an iso if for eg all Hu's are torsionfree

so for eg H S Hom H 51 2 I 2

To study H confnir we'll constructmaps

Confulk S

to get induced
2 H Sy H confuR2



WEH S1 a 2 generates H Sl
Have WEH s sending

Analogous cohomology class in H confulk

III Y

Lij H confu1R

5
the motion of i wrt j

I Aj Y j 0

Rigorously we have a map

aijConfulk s

Mian

1 E
t

Represent Lij by a directed graph

we've described some elementsof H confnIR
turns out they also generate H
we understand their action on Hi as Hi 2

What about higher HK

Using the cohomology up product we can get some

higher degree cohomology classes

We'll represent these as graphs too

Eg 2,2413 H 1



34212413 E H3
2

7574
Implicit in these graphs is an ordering of the edges
to record the order of multiplictof the Lij's

Note edges IE G I m degree of cohomology IE G I

KGThijhjuthjudkitdkixij.IO Arnold

to

Changing the ordering o of the edgesECGinduces a corresponding signchange
And Tj j

But how can we understand thesegraphs as Hom Hr 2

9hgI.ie I ave a way of associating cohomology
classes to directed labelled graphs with an ordering on edges

To understand how they act on Hu we need to
unpack how the cup product works

But it turns out there is a combinatorial rule that

captures this



This shoulet for eg giveus 1.12 Y I

4 12 Y 0

Here'show wedefinethegeneralpairing G T

If there's an edge in.j in G sit there is no

path bw i j in T then CG TIe

Eg Y r 0

Otherwise define

Bast edgesof G internal vertices of T

i is lowestvertexof pathfrom i to j

Eg 1T

is iii
a T 0 if Bait not a bijection

1 0 W

afends
on and



Day 2 Some Proofs

Goal show that the H and H corresponding to the trees
graphs from Day1 generate all the cohomology of confur

Paringdown to tells trees and long lines
Recall the Jacobi identity

Y Y 0

This implies foreg that
23 4 2 3 4 3 4 1 2

Note how both terms on the righthandside have exactly one
vertex to the right of the lowest trivalent vertex
In general we can use the Jacobiand Antisymmetry relations
to show that the Hx generated by binary forests is in fact
generated by thosewhose components are all tall trees

in

A tall tree
here i is minimel

amongthe in

similarly we can use the Arnold identity to show that
the H generated by graphs is in fact generated bythose
graphs whose components are all longgraphs

j
yes
jun1

A longgraph

Cheremingthe



The graph tree pairing on tell trees and long graphs
is perfect in the sense that it is I iff
il iz in jur ju and 0 otherwise

This lets us deduce linear independence of these H
and H elements and thus gives us a lower

bound on the ranks of Hx and HX

The forget A Point Fibration

Now that we have a lower bound on the ranksofHxandH
we'll find an upperbound If this upper bound agrees

with

the lower bound this will show that all the Hxand H
is generated bygraphsandtrees

We have a surjective map

conf.lk FtconfnR2

This is a fibration and the fibers are IR n 1pts YS

so we get
s

conf.lk FtconfnR2

Fibrations are a topological analogue of shortexact
sequences

Analogous to how for a s.es of finitely generated
abeliangroups

K M N 0

we have rk M rk K N s

for the above fibration we have

okHe confnR2 okHKCY.gs confaR2

ca
rk Hiv s Hr confnR2



in fact it turns out we have equality above

Thus we get an upper bound on H ConfnR2 in terms

of H VS and H confn R

We can thenget an upperbound on H confn R
and so on

using our tower of fibrations

YS forfur

4s
contfr

s conf iR

confIR 1R

And it turns out theseupper bounds agree with the
lowerbounds

given by tall trees and long lines

Proving the Arnold Relation

We want to show

ijαju αjkαki kidij 0

Assume WLOG that i j k 1 2 3

IfIde To express this as a cupproduct that
is demonstably0

We'll use the fact that cupproducts
are dual to

intersections

Proof Since ConfsRd is a manifold its cohomology is

Poincare Lefschetzdual to its locally finite homology

Consider the submanifold of N 2223 ConfRd

s.t.sn as as are collinear This submanifold has



3
components Let Coli denote the one in which x

is in the middle

Coli is a submanifoldof codimensiond 1
suppose ni x aid Then n mnas beingcollinear

means that 111g 114 for all aged This gives

us d 1 constraints
Whenoriented coligives a locally finitehomology

classin codind 1

Thus the Poincare Lefschetz dual of Col is in
led confRd Thus it is a linearcombination

of Air 923 931 We can findwhat this combination

is by intersecting Coli with various Y
caexplnah.tnforwhy
this is true at the
end oftheproof

Note Coli can only intersect Y and y and
does so at exactly one point each

Moreover these intersections differ in signby Is
coming from orientationreversingofthe line onwhich
the 3 points lie

Thus the dual ofCol is Aij air
Since Col and Col are disjoint their dualscup
product to 0

Thus O air G3 923 21

Giza 9,292 913923 9139121

Aizazz 0 19 23a's 17 3,912

Azazz Azza's 931912



Explanation of
Here's a general fact

Let M be an mdimmanifold and we HK M
Let o E Hu M and let WLEHmK M be the
Poincare Lefschetz dual of w
Then

w o signof on we
In our case w Coli a Y

Here'swhy Let M denote the fundamentalclassofM
let E H M bethe dual of 0

a o W CM no Et UW M

wetersgin once



Day 3 Homological stability
Group Co homology
G discretegroup
Fact a topological space called the classifyingspace BG

s.to
x G

and x ̅ univ cover contractible

is unique upto homotopy

Eg G 2 BG s

G 22 BG s xs

G Fz BG S vs

Homological stability
suppose we have a sequenceof spaces or groups Xn
w natural inclusions

in Xn Xut spaces are growing

If for fixed k N K sit

HuXn Ha nti n NCK k diagL.ve
Then Xn is said to be

homologiyllystable
unstable
range HuXn

stablerange

n



Homological stability arises in manynaturally occurringfamilies
of spaces

Eg IRP

IPPIRP
e ve've

IRP 2 cell attached vie za z

e ve've

In general IRP e ve u ve

Chain complex 2324232 0

Attaching an ntl cell doesnotaffectHx indegen 1
So in general Hu IRP Hu Rpt is an iso

for n2kt2

Eg UConfulk

We need inclusion maps UConfulk Uconfut1R
Need a way to continuouslyadd a new point

One way Zy 2n to Zn Zn I tilt 221 t.it Zn 1

These maps induce isos on Hr for n 2k



Eg Unf

g gsurfacew I bdrycomponent

H i.ec
fmerneighbonhoo

Eg Mappingclass Groups

Mod Eg i Diffeo Eg dEgil
Isotopy

ModEg i ModEgts 1

Eh
I

Why homological stability
In the exampleof IRP we computed Hx to provehow
stability
But a strength of hom stability is that we can often
prove homological stability ranges without knowingwhat
the H groups are

This can cut down the workof computingHx as it thensuffices
to only find Hx in the unstable range



Even more remarkably there are ways to compute thestable homology without even computingany unstableHx
Thm Madsen Weiss 2007 computed thestableHxofModEg

stability in H UconfnlR

Let's think about H Uconfn1221

Hicuconf.IR E H IR I 0

We have Hi UConflR 2 generatedby In
stability H cuconfire I 2 generated by

Now let's think about Hzconfn1R
He is generated by all possible orbit systems with 2 orbits so let's
first list all such orbits

Iii
Note that the most no of particles you can have in such an
orbit system is 4 This suggests we might start seeing
hom stability at n 4

Indeed we have

Hz conf1122 H R2 I 0

HeConf 112 I 0 can't make 2 orbitswithonly
2 particles



Hzconf 1R 0 Turns out in homology
p becomes

2 1 1 3,3 0

HcUConfy1R 22 generated by E r
Turns out in homology

stability E is vet to itsnegative29109

HzUConfsk 22 generatedby Gi In

In general in deg k we have stability for n 2k

i e Huuconfn.IR HrUConfut1122 for n 2k

Confulk and Representation stability
Recall Hicconfully is freely generated by g in

for all possible pairs i j

Thus Hicconfulk 2 not stable

The problem here arises because now we careabout labels

All the homology classes have the same shapes as before

but now adding a particle gives
us many new ways

to

label our points
Luckily there is a frameworkunderwhich we can expressthis as
a form of stability

Let Vij denote the loop i in

Thus Hicconfully juVij 2



Note that Sn 7 Confer by permuting labels and so
Sn A H confulk

We have the following diagram

Hi confirl Hi conf k
Hilgonfsr Hilgff

k

Ithat
in it ap is a Hicconfanti

For o E su 0 Vij Jogi 615

Thus Notice that we can obtain all possible Vij EHConfnley

from 8,2 E H ConfzR2 and the Sn action

The abovepicture is an example of a finitelypenerated
FImodule

The FIcategory category of finitesets and injective maps

1 2 3 4 5 n



An Emodule is a functor V from the FI category to thecategory of
R modules for some commutativering R
Let's use In todenote the image of the object n under this functor

An FI module

I if g

said to be finitelysenerated if d EIN sit nod

Un can be obtained fromV1 Vd by thearrows in the picture

Thus H confulk is a fingen.FImodule
This phenomenon is called repentainstbility Ilaggpage

Sn representations

TheChurch Ellenberg Farb
For a finitely generated FI module we have
Sn representation stability in the sense illustrated below

HConfylRQ H confRQ Hconf.IRQ sH conftRQ

VI YgD Y Via D Y VDD D Y 3



Day 4 scanning Arguments

lastTime UconfulR UConfatIR

II Ii
This induces maps on Hie
For fixed k when n 2k we have isos

He ConfulR Hr Uconfnt 1R

Q How do we calculate the stable Hx

UconfulR has two monoidal structures ie by
stacking configurations horizontally and vertically

II 11 lit
II I Fit

These sorts of monoidal structures make for a goodsetting
for scanningarguments
Here's the maingoalfortoday
Tha The stable Hxof UConfnIR is H 2252

The stable Hx of Uconfurd is Hx Asd



LOPx.SE fgicd spaces basept
RX s x x compactopen topology

1724
Path in a apyof based loops in
Path

componentsofRX IT X

s x 2 2

Equivalent to s X
52 I dI

MI
Constructing BG
G discretegroup
BG IT G

univcover IT 0 fork 2
Eg G 2 BG S G 2 2 BG s'xs

The benstuton for constructing a AcomplexmodelofBG

single vertex

edges loops for geG g C 92

2 simplices go g 8 11



nti simplices go g 1 Ign
d g 1 gu Σ 1 gogil gigital Iga

1 go gil Ign
anothermodel

F.fr
Points are allowed to fall offtheends
or collide and labels get multiplied

1Mt

Can do this construction for anymonoid M
M t.toMn Mn Mm Mmtn

Visualising BM for M 1 ConfnlR

iildotted lines
indicate that points are
allowed to disappearofftheseends



Group completion

suppose we have a monoid M 11mn
For a fixed meM we getstabilisation maps

M Im M M My
In our case M I UconfuR2 m I
Let Mas colimit of the above diagram

in our case Mas
Spansofany finite no ofconfiguration

The stable homology is HxMas

the Groupcompletion McDuff Segal 70s
If M IMn is a monoid and is homotopycommutative
then H 2 Mas H IBM
Thus H Mos E H RBM

can prove this theorem using
Tha If M is a monoid sit To M is a group

then M IBM

The map is m to loopwhere m travels
fromleftto rightend

Thereasonfortaking 2 Mas in the GroupcompletionThm is to
make To into a group

Mo Mo Mo
MYm.IM
Mz Mz M 2x Mas



The Scanning Map

The The stable Hxof UConfnIR is Hx 2252
we shall prove this by applyingGroupcompletion twice
M UConfnlR

BM

af f points can disappear
off the left
right ends

M BM itself has a monoidal structure givenby stackingvertically
BM

l
5

If points can disappear both

1
verticallyandhorizontally

Let M BM

stable H of Uconfur 6111 RBM H 2M

colltion
22 BM

Hx 22M

Prof M 52

Pf Think of S D 0D
s M

If one

single pointconfiguration emptyconfiguration



M 5

Case There is a unique closest point to
the center

y magnify i i I
iiiii.ieiiiii

Cases There are two or more closest pointsto thecenter

1 iiiIt Iiii
Note.IE

m s is ids

i

M s M is idm

Iiiiiiiiiiiii.i.FIIiiii id I

can be homotoped to byredially projecting

i

all the green pointsoutward until only one is left



Day 5 The Little Disks Operad
Operand Encodes ways of multiplying things
0 00M

U n topological space
gives ways to multiply n things

0 n 0 i 0 iz x 0 in O ut iz t in

satisfying unit associativity equivarience axioms

0 3 0 2 0 i 0014 0 7

E FI
The Little Disks Operad

ez 19 n

C2 n embeddings of n disks in the
unit disk

22 3



e n x ii e in E i tiet in

e 2 e2 3 e 2

I

ez 5

Algebra over an Operad
U 10 n

A topological space

O n AxAx.xA A
n

satisfying axioms

Eg O ez Little disks operads
22 s x x

each x u xx six



52 D dD

Thinkof s X x as amap whichsends

x f x g

ez 2 f s g s x

she on

h s

Eg Mapping class Groups

Eg v 7

ModEg i 11 2 8

IB
Tilting



The

9 theDishsopeed
Hx ez n E 3

n

aggEnfn
Int D2

2

3

This is a fibration with contractiblefibers

Hx e n H Confn Int D2

Hx Confn1R

Prof If O is an operand then H 0 is an operand

H 0 n H 0 i H 0 in
t Hx O n Oci x0 in Hx0 i tict in

If A is an algebra over 0 then H A
is an algebra over H 0

Hx O n H A H A

Éth HxOcn Ax A HCA



So H A has a lot of extra structure
We can better understand H A by understandingHxO
so it's useful that in the case of the littledisks
operad we know its homology entirely

Closing Remarks IR versus IRd
Everything from this week goes through for IRA

H ConfnRd orbit systems
Scanning stable Hx
Little disks operand

Hilongff G constantloop

Helconfulfs s Confirm

32

HyConfulRI Sx s ConfulR

y Y
Guy Systems

trivialHxonly in even degrees generated

similarly confuR has non trivialHx indegrees d 17,2 d 1 3 d 1

In 112 ostentation preserving

in 113 1 Tentationie using


