Day 1

1. X - A Riemann surface (1 -dim complex unfld)

If x is compact, then we know that $X \underset{\text { homed }}{\cong} \sum_{g}$
Uniformization The: X-simply conn R.surface
Then X binal to $\mathbb{C}_{9} \mathbb{D}$ or \hat{T} unit disk
$\omega / 0$ dry
"
\therefore If x is a R surface, \tilde{x} universal coves, then $\begin{aligned} & \tilde{x} \in\left(\hat{\mathbb{C}}, \mathbb{P}^{\prime}, \mathbb{C}\right) \\ & \downarrow \\ & x\end{aligned}$
So every R. surface can be realised as a quotient of $\mathbb{C}, \mathbb{P}^{\prime}$ or \mathbb{D}

Fact: $\mathbb{P}^{\prime} \rightarrow \times \xrightarrow{? \text { conning maps }}$

$$
\mathbb{C} \rightarrow x\}
$$

Conilar Deck trenfometions.
They have be a discrete family of bikol maps.
Bihol maps $\mathbb{C} \rightarrow \mathbb{C}:\{a z+b \mid a, b \in \mathbb{C}\}$
Any discrete family of them looks like either $\left\langle a_{1} z+b_{1}\right\rangle$
or $\left\langle\begin{array}{l}a_{1} z+b_{1} \\ a_{2} z+b_{2}\end{array}\right\rangle$, where $\left[\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right]$ hes $\neq 0$ det.
(Lames $\left.s^{\prime} \times \mathbb{R}\right)$ Quotienting \mathbb{C} by the actions of either of these gives a cylinder or torus, respectively.
So Uniformization \Rightarrow If x is a R. surface, not IP1, cyl. or Torus or \mathbb{C}, then con be realised as a quotient of \mathbb{D}.

Deon: (Branched Cover) X, Y Riemann suffices
$f: X \rightarrow 4$ set. $\exists B C Y,|B|<\infty$
s.t., for $A=f^{-1}(B)$
$\left.f\right|_{x \backslash A}: x \backslash A \rightarrow Y \backslash B$ is a covering

If B is minimal, $B_{f}:=B$ is celled the set of breach pts of f.
$R_{f}:=f^{-1}(B)$: ramification points of f

Examples: i) Polynomials: $\hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$
2) If x, y pet, $f: x \rightarrow y$ won-constant hal. Then f is a branched cover of finite degree

Defy: $f: x \rightarrow 4$. $x, 4$ compact top space
f is "proper" if $\forall k \ll 4$,$\} (compect subset$

$$
f^{-1}(k)<x \leq \text { notation) }
$$

Eg: $\cdot \mathbb{C} \rightarrow \mathbb{C} \backslash\{0\}$
$f(z)=e^{z} \quad$ is in infinite sheeted branched coves

- Any entire fr: $\mathbb{C} \rightarrow \mathbb{C}$ is a branched cover

The Riemenn - Hususitz formula
If X, Y are cpet R. surfaces
$f: x \rightarrow 4$ has degree N
r - \#remification pts
b - \#brench pts
Then

$$
x(x)-\gamma=N(x(y)-b)
$$

Pf: 1. Triangulation technique to show $\left.x(x)=N x(4)-\sum_{f \in x} \operatorname{deg}_{f}(p)-1\right)$
2. Nate thet $\sum_{p \in X}\left(\operatorname{deg}_{f}(p)-1\right)=N b-r$, and this the formula follows.

The Trienguletion Technique:
Σ : Triongulation of $Y-\left\{\begin{array}{l}v \text { vestices Assume all } \\ e \text { edges } \\ f \text { faces }\end{array}\right.$
Σ^{\prime} : Pullback of Σ by $f: x \rightarrow 4$. Then, Σ^{\prime} hes: Nf faces Ne edges
Now,

$$
\begin{aligned}
& x(y)=f-e+v \\
& x(x)=N f-N e+N v-\sum_{p \in x}\left(\operatorname{leg}_{f}(p)-1\right) \\
& \Rightarrow x(x)=N x(y)-\sum_{p \in x}\left(\operatorname{deg}_{f}(p)-1\right)
\end{aligned}
$$

* Heve to be coreful bout "liffing" the frienqubtion $\bar{\Sigma}$ - the that f is a cover tact, the the breachpte are at vorerices, and the foct that f is a cover and hence a lacel homeopmorphism, instence, it ensures that edoes

being a hol mende this differentid my? So that f eage
ori is a

$$
f: x \rightarrow 4 \quad x(x)=x(4)=0 \text { undles we heve }
$$

$$
f: x \rightarrow 4
$$

$$
r=?
$$

$x(x)=x(4)=\begin{gathered}0 \text { unless we here } \\ \text { something like local diffeo }\end{gathered}$

$$
\Rightarrow r=N b
$$

$$
b=?
$$

But (assuming the me-p is surjective) this is not possible. Any brench pt has N pre-imaegs with multiplicity, and it being a brench pt implies atleest one of those multiplicities is >1 ((for eg in the $\operatorname{deg} 2 \operatorname{mop} z \mapsto z^{2}, 0$ hes 1 pre-inge, $2 \mathrm{w} /$ multiplicity) 1 位 pts is So the contribution of each brench pt to the set of rimifce $r<N b, a$ contidiction
2. $x=\mathbb{C} / \Lambda_{1}, \quad y=\mathbb{C} / \Lambda_{2}\left(\Lambda_{1}=\mathbb{Z} \oplus \tau_{1} \mathbb{Z}, \Lambda_{2}=\mathbb{Z} \oplus \tau_{2} \mathbb{Z}\right)$
$f: x \rightarrow 4$. $x, 4$ both have \mathbb{C} as univ cover. Can precompose f with $\mathbb{C} \rightarrow x$ to get $\mathbb{C} \rightarrow 4$, and then lift that to $g: \mathbb{C} \rightarrow \mathbb{C}$. Qu: Whet does g look like?
$g: \mathbb{C} \cdots \cdots \rightarrow \mathbb{C} \xrightarrow{\text { Need: }}$

$$
\begin{aligned}
& g(z+1)=g(z)+\lambda_{2}(z) \\
& g\left(z+r_{1}\right)=g(z)+\omega_{2}(z) \\
& \lambda_{2}(z) \omega_{2}(z) \in \Lambda_{2}
\end{aligned}
$$

\geqslant
But note k_{2}, ω_{2} cts frs, taking value in discrete lattice Air. So content.

$$
\begin{aligned}
& g(z+1)=g(z)+\lambda_{2} \\
& g\left(z+r_{1}\right)=g(z)+\omega_{2}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \quad g^{\prime}(z+1) & =g^{\prime}(z) \\
g^{\prime}\left(z+\tau_{1}\right) & =g^{\prime}(z)
\end{aligned}
$$

This implies that the values of g^{\prime} only come from this (compet) shaded region.
since this region is pet, these values are bounded

So, g^{\prime} is an entire for, with boded range

$$
\begin{aligned}
& \Rightarrow g^{\prime}=C \text { (constant) } \\
& \Rightarrow g=C z+D \text {. } \\
& g(z+1)=g(z)+\lambda_{2} \begin{cases} & C z+C+D=C z+D+h_{2}\end{cases} \\
& g\left(z+\tau_{1}\right)=g(z)+\omega_{2}>C_{z}+C \tau_{1}+D=C z+D+\omega_{2} \\
& C=\lambda_{2} \in \Lambda_{2} \\
& c r_{1}=\omega_{2} \quad \Lambda_{2}
\end{aligned}
$$

So, given $\Lambda_{1}=\mathbb{C} \oplus \mathbb{C} \tau_{1}, \Lambda_{2}=\mathbb{C} \oplus \mathbb{C} \tau_{2}$,

$$
g \in\left\{C z+D \left\lvert\, \begin{array}{l}
C \in \Lambda_{2} \\
D q \in \Lambda_{2}
\end{array}\right. \text { and }\right\}
$$

Questions
\rightarrow Well-definedness of lifting up a triangulation

- Uniformitation \Rightarrow Little Picard

Little Picard: A non-conotant holomorphic for $f: \mathbb{C} \rightarrow \hat{\mathbb{C}}$ can miss atmost one point (ie. Here is atmost one point in $\hat{\mathbb{C}}($ image $f)$

Proof: Suppose $\exists f: \mathbb{C} \rightarrow \hat{\mathbb{C}} \mid\{a, b\}$.
Uniformization \Rightarrow univ. cover of $\hat{\mathbb{C}} \backslash\{a, b\}$ has to be D (\mathbb{P}^{\prime} cen only cover $\mathbb{P}^{1} ; \mathbb{C}$ cen only cover tori and cylinders)

Lift f to $\hat{f}: \mathbb{C} \rightarrow \mathbb{D}$

$$
\begin{gathered}
\begin{array}{c}
\tilde{f},-7 \mathbb{D} \\
i \\
\mathbb{C} \\
\stackrel{f}{c} \downarrow \\
\mathbb{C}
\end{array}\{a, b\}
\end{gathered}
$$

\tilde{f} is a bounded entire function. \therefore constant.
Contradiction.

Day 2
Monodrony Permutation Representations
$f: X \xrightarrow{n} 4$ branched cover; $B \subset Y$ breach points, $R \subset X$ ramification points Fix $q \in Y \backslash B$. Let $\left\{q_{1}, \ldots, q_{n}\right\}=f^{-1}(\{q\})$.

Take any loop $\gamma \in \Pi_{1}(4 \nmid B, q)$. Lift γ starting at $q i, l$ let the endpoint of this lift be $\sigma(i)$.
Thus lifting ν defines a permutation of $\left\{q_{1}, \ldots, q_{n}\right\}$ $i \longmapsto \sigma(i)$.
Thus, $f: x \rightarrow 4$ gives rise to a homomorphism $p: \pi_{1}(4 \backslash B, q) \rightarrow S_{n}$

$$
\begin{aligned}
& \sigma(1)=3 \\
& \sigma(2)=n
\end{aligned}
$$

Let $B=\left\{y_{1}, \ldots, y_{k}\right\}$. For $1 \leq i \leq k$, let ν_{i} be a loop centred at q wrapping once around y_{i}.
We are particularly interested in the permutations $\rho\left(r_{i}\right)$ defined by lifts of the γ_{i}.
(Thus this gives a way of studying how f "wraps loops around " the singularity y_{i} in $4 \backslash B$)

Eg:
1)

$$
\begin{aligned}
& f: \hat{\mathbb{C}} \xrightarrow{n} \hat{\mathbb{C}} \\
& z \mapsto z^{n} \\
& R=\{0, \infty\}=B
\end{aligned}
$$

Let $q=1$.
Then $q_{1}=e^{2 \pi i / n}=\omega, q_{2}=\omega^{2}, \cdots, q_{n}=1$

$$
f(\gamma)=(123 \cdots n) \in S_{n}
$$

2)

$$
\begin{aligned}
f: \hat{\mathbb{C}} & \xrightarrow{\longrightarrow} \hat{\mathbb{C}} \\
z & \longmapsto \frac{z^{3}}{(1-z)^{2}} \\
f^{\prime}(z) & =\frac{3 z^{2}(1-z)^{2}+2 z^{3}(1-z)}{(1-z)^{4}} \\
& =\frac{3 z^{2}(1-z)+2 z^{3}}{(1-z)^{3}}=\frac{3 z^{2}-3 z^{3}+2 z^{3}}{(1-z)^{3}}=\frac{3 z^{2}-z^{3}}{(1-z)^{3}} \\
& =\frac{z^{2}(3-z)}{(1-z)^{3}}
\end{aligned}
$$

Critical points: 0,3
Critical values: $0,27 / 4(=B)$

$$
\begin{aligned}
& f^{-1}(0)=0 \\
& f^{-1}(27 / 4)
\end{aligned}
$$

Local deg at $3=$ (multiplicity of 3 in $f^{\prime}(z)$) +1
$=2$. So one more pre-imge
So $f^{-1}(27 / 4)=\{3, x\}$

Observations : 1) $p: \pi_{1}(4 \backslash B, q) \rightarrow S_{n}$ defines a transitive action.
(Given $1 \leq i, j \leq n$, take any path ν from q_{i} to q_{j}. Then $f(\gamma)$ gives a loop centred at q, whose lift is ν. Thus $\varphi(f(\gamma))$ sends $i \longmapsto j)$
2) Eg 2 shows the I mary not be Cine. $\forall x$,
$\{g: g x=x\}=\{i$ free. $\left(\varphi\left(\nu_{2}\right)=(12) \neq i d\right.$, but $\rho\left(\gamma_{2}\right)$ still fixes $\left.q_{3}\right)$
But in Eg 1 it is free.
(i.e. 3) The action may or may nat be faithful $\{g \mid g x=x \forall x\}$ (although both examples here are faithful)
$=\{i d\}$) $=\{i d\}$)

Theorem: Fix 4, $B \subset 4,|B|<\infty, \quad n \in \mathbb{N}, q \in Y \mid B$.
Then we here a bijective correspondence:
$\left.\left\{\begin{array}{l}\text { branched covers } f: x \xrightarrow{n} 4, x \text { compact } \\ \text { branch pts } B_{f} \subset B\end{array}\right\} / \begin{array}{c}\text { isomorphisms } \\ \left(\begin{array}{l}x \\ \uparrow \downarrow \\ x^{\prime}\end{array}\right) \\ f^{\prime}\end{array}\right)$

$\left\{\rho: \pi_{1}(4 \backslash B, q) \rightarrow S_{n}, \varphi\right.$ treneritive\}/conjugation

Proof: We already know how to get 1 from a given $f: x \rightarrow Y$.
So we need to construct a way to go in the reverse direction.

From covering space theory:

$$
\{p: W \rightarrow Y \backslash B \text { coveringmep }\}
$$

$\uparrow \downarrow$
\{Subgroups $H C G=\pi_{1}(4 \backslash(B, q)\}$
The subgroup H is precisely the group $p_{*}\left(\pi_{1}(\omega)\right)$ $C \Pi_{1}(Y \backslash B)$ (i.e. the loops in $Y \backslash B$ that get lifted to loops in W).
Another way saying this is H consists of the loops that define the trivial permutation on $\{1, \ldots, n\}$ under P.

Let $H=\operatorname{ker} \rho \subset \Pi_{1}(4 \backslash B, q)$.
Let $f: W \rightarrow Y \backslash B$ be the covering space associated to H.
Transitivity of $l \Rightarrow n$-sheeted cover

Con use the covering map f to lift the complex structure on $4 \backslash B$ to give a complex structure to W, thereby making it a Riemann surface.

In fact,
Fact: If $f: S \rightarrow 4$, where 4 is a Riemean surface, S - Connected S f is a branched cover
Then \exists complex structure on S which males f hol.

We need to extend this cover $f: W \rightarrow Y \mid B$ to a breached cover $\tilde{f}: \tilde{w} \rightarrow Y$.

For $y \in B$, pickle a small disk D around y.
Then $f^{-1}(D \backslash\{y\})=\Perp W_{i}$, where each $\left.f\right|_{w_{i}}: w_{i} \rightarrow D \mid\{y\}$ is a (finite sheeted) cover.
$D \backslash\{y\}$ is bihol. to $D \backslash\{0\}$ (just scale by a suitable factor)

In fact,
Fact: Two annuli of radii $(R, \gamma),\left(R^{\prime}, r^{\prime}\right)$ respectively are bikol $\Leftrightarrow R / r=R^{\prime} / r^{\prime}$
$D \backslash\{0\} \cong D \backslash\{y\}$ is the special case of this with $r=\gamma^{\prime}=0$

Fact: Any finite - sheeted cover of $D \backslash\{0\}$ hes to be by a $D \backslash\{0\}$ (the covering map being the usual $z \mapsto z^{k}$)

This cen be proved using the Uniformization The. $D \backslash\{0\}$ is homes (and bikol) to a cylinder, and so its covers are \mathbb{C} (infinite-sheeted) or $\mathbb{D} \backslash\{0\}$ itself.

So, we here:

$$
\begin{gathered}
D \backslash\{0\} \rightleftarrows w_{i} \\
\operatorname{deg} k \downarrow \\
D \backslash\{0\}
\end{gathered}
$$

Lifting the $D \backslash\{0\} \rightarrow D \backslash\{y\}$ binal gives rise to a bikol. $\operatorname{DD} \backslash\{0\} \rightarrow W_{i}$.

Use this to "add a point" to W_{i} by extending the $\operatorname{mep}^{\prime}$ to $D \rightarrow W_{i} \cup\left\{b_{i}\right\}$.

Extend the map $f: W \rightarrow Y \backslash B$ to $\tilde{f}: W \cup\left\{b_{i}\right\} \rightarrow 4$ by letting $\tilde{f}\left(b_{i}\right)=y$.
$X:=W U$ \{new disk\} ~ i s ~ t h e ~ d e s i r e d ~ c o m p a c t ~ b r e a c h e d ~ coves of Y

Eg.

$$
\begin{aligned}
& 4=\hat{\mathbb{C}} \\
& B=\{0, \infty\} \\
& q=1 \\
& 4 \backslash B \cong c_{y} \text { cinder } \\
& \varphi: \Pi_{1}(4 \backslash B)=\mathbb{2} \longrightarrow S_{n} \\
& \text { kea } \rho=n \mathbb{2}
\end{aligned}
$$

Corresponding cover: Cylindu (wraps around in times)

Extending the map from $\hat{\mathbb{C}} \mid\{0, \infty\} \rightarrow \hat{\mathbb{C}} \backslash\{0, \infty\}$ to $\hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ using the above construction gives beck the branched weever $z \mapsto z^{n}$.

Aside: Monodromy Braid Representations Consider the example $z \mapsto z^{2}$.

The permutation determined by the lift (s) of the $\operatorname{loop} 2$ is (12). If in addition, we also traced the motion of the lifts ν_{1} and γ_{2} w.r.t. each other:

we get a braid. This is called the monodrony braid representation of f.
Similar to how braids give "more information by encoding the "tangling up" of strands rather then just the permutation they define, monotony braid representations cen encode more information than monotony permutation representations.

Applications:

- Monadromy permutation Reps: Studying solvebility of polynomids;
- Monodromy Braid Reps: Curt McMullen's "Braiding of the Attractor"

Day 3
Hyper elliptic Curve: A compact Riemann surface X st.子 holomorphic map (and hance branched cover) $f: x \rightarrow \mathbb{P}^{1}$ of degree 2 .

Let g : genus of X, b : wo. of breach pts, r : no of ramification
We always have $b \leq r \leq(n-1) b$. Since $n=2$ here, this forces $b=r$.

Riemann - Hurwitt formula \Rightarrow

$$
\begin{aligned}
& x(x)-b=2\left(x\left(\mathbb{P}^{\prime}\right)-\gamma\right) \\
\Rightarrow & 2-2 g-b=4-2 r \\
\Rightarrow & 2 r-b=2+2 g \\
\Rightarrow & b=2+2 g=r
\end{aligned}
$$

Thus $\Pi: X^{2} \xrightarrow{2} \mathbb{P}^{1}$ determines a tuple of $2 \mathrm{~g}+2$ pts on $\mathbb{P}^{!}$.
Fact: The opposite is also true.
We will sketch a rough proof of this.
Let $a_{1}, a_{2}, \ldots, a_{2 g+2} \in \mathbb{P}^{\prime}$

$$
\begin{aligned}
& h(x):=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{2 g+2}\right) \\
& \text { Let } x:=\left\{(x, y) \mid y^{2}=h(x)\right\}
\end{aligned}
$$

X is a Riemann surface.

However x is not necesserily compact - yet.
Let $k(z):=z^{2 g+2} h(1 / z)$
zeroes of $k: 1 / a_{i}, 1 \leq i \leq 2 g+2$
Let $Y:=\left\{(z, w) \mid \omega^{2}=k(z)\right\}$

Define $\varphi: X \mid\{(x, y) \mid x=0\} \rightarrow Y$ as follows:

$$
\begin{aligned}
U:=X \backslash\{(x, y) \mid x=0\} & \longrightarrow Y \\
(x, y) & \longmapsto(1 / x, w)
\end{aligned}
$$

Need: $\omega^{2}=k(y x)=\frac{1}{x^{2 g+2}} h(x)=\frac{y^{2}}{x^{2 y+2}}$

$$
\Rightarrow w= \pm \frac{y}{x^{g+1}}
$$

Choose $\frac{+y}{x^{g+1}}$
So,

$$
\begin{aligned}
U: X \backslash\{(x, y) \mid x=0\} & \longrightarrow 4 \\
(x, y) & \longmapsto\left(1 / x, \frac{y}{x^{g+1}}\right) \\
& \operatorname{Im} \varphi=: V
\end{aligned}
$$

Let $z=U L V /\{(x, y) \sim \varphi(x, y)\}$

Turns out - z is compact
t hes genus g
z is the hyperelliptic surface were looking for.
(Define $\pi: z \rightarrow \mid \mathbb{P}^{1}$ by
$(\underline{x, y) \mapsto x}$)
Hyperelliptic Involution
$\varphi: z \rightarrow z$
$(x, y) \mapsto(x,-y)$

Then . 1 has order 2

- effixes $2 g+2$ pts (i.e. the points $\left(a_{i}, 0\right)$)
q: Hyperelliptic involution

Deft: z: cpet Riemann surface.
$\varphi: z \rightarrow z$ is a hyperelliptic involution if

- 1 has order 2, and
- l fixes $2 g+2$ points.

Fact: z is a hyperelliptic surface

z has a hyperelliptic involution

- The \uparrow can be proved by qustienting z by the action of the involution l to get the map $\pi: z \rightarrow \mathbb{P}^{\prime}$
- The $\Downarrow y$ direction can be proved by using the above construction and the further following fact:
Fact: Two tuples $\left(a_{1}, a_{2}, \ldots, a_{2 g}+2\right)$ and $\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{2}^{\prime}+2\right)$ in \mathbb{P}^{\prime} give rise to isomorphic z, z^{\prime} \Leftrightarrow The tuples are related by a Möbius transformation.

Moduli Spaces - Examples

$$
\begin{array}{ll}
\operatorname{Mod}\left(S^{2}\right)=\{*\} & \left(\mathbb{P}^{1}\right) \\
\operatorname{Mod}(\mathbb{D})=\{x, y\} & (\mathbb{D}, \mathbb{C})
\end{array}
$$

$$
\mathbb{C}, \mathbb{D}, \mathbb{P}^{\prime}
$$

Ex: Whet is $\operatorname{Mod}(D \backslash\{x\})$ (Ans: $\left\{\mathbb{C}^{x}, \mathbb{D}^{x},(0, \infty)\right\}$
 The $\frac{R}{r}$ ratio fores annulus)

So Mod (Torus) parameterized by H

Sphere w/ 3 punctures

$$
\begin{aligned}
& \operatorname{Mod}\left(S^{2} \mid\{0,1, \infty\}\right)=\{*\} \\
& \operatorname{Mod}\left(S^{2} \mid\{a, b, c, d\}\right)=\hat{\mathbb{C}} \mid\{0,1, \infty\} \\
& \operatorname{Mod}\left(S^{2} \mid n \text { pts }\right) \subset \mathbb{P}^{n-3}
\end{aligned}
$$

