Serre's Then: If G is train-free, HCG i.i.
$$[G:H] < \infty$$

Then $cd(H) = cd(G)$.
Two important assumptions have : G train-free, and $[G:H] < \infty$
Non-examples: $0:13 c 2m$ Firsts index, but not train-free
 $cdo cdoo$
 $2 c 2^{2}$ Train-free, but infinite index
 $n \mapsto (n, 0)$
 $cd1 cd2$
Stetch of Read : break into cases : $(O cd(G) < \infty : Can prove cd(H)$
 $(use first intermediate) (Use infinite index
 $n \mapsto (n, 0)$
 $cd1 cd2$
Stetch of Read : break into cases : $(O cd(G) < \infty : Can prove cd(H)$
 $(use first intermediate) (Use infinite index
 $n \mapsto (n, 0)$
 $cd1 cd2$
Stetch of Read : break into cases : $(O cd(G) < \infty : Can prove cd(H)$
 $(use first intermediate) (Use infinite) (Use intermediate) (Use intermedine) (Use intermediate) (Use intermediate) (Use intermediate)$$$

Serre's Thin =>
$$cd(H) = cd(H\cap K) = cd(K)$$
.
This allows us to make the following defn:
Defn: The virtual cohomological dim (vcd) of a group G is
the coh. dim of any finite-index torsion-free subgp of G.
fact: $vcd(Sln 2) = \binom{n}{2}$
Other known groups: $vcd(Modq) = 4q - 5 (Modq a Teichq)$
 $vcd(Sprg(2)) = q^2$
 $vcd(Out(Fn)) = 2n - 2$

Theorem : $H \subset G$ finite index. Then $cd_{Q}(H) = cd_{Q}(G)$ <u>Rink</u>: Note obsence of torsion-free assumption. $cd_{Q}(G) \leq cd(G)$ <u>Cor</u>: $cd_{Q}(G) \leq vcd(G)$

In fact, we also have the following:
Then:
$$\tilde{X}$$
 constructible, $G \propto \tilde{X}$ simplicially will finite stabilizerse.
Then
 $H_*(G; \Omega) = H_*(\tilde{X}/G; \Omega)$
(Note : in the case of $G:Sln2, \tilde{X} = SlnR|SQ(n)$)
(III) borel - Some duality
We'll whith our attention now sowards Ω - coefficients.
We know $cd_{\Omega}(Sln2) \leq vcd(Qn2) = \binom{n}{2}$
Conjecture: $H^{(3)-i}(Sln2; \Omega) = O$ for $n >> i$
(Avel. - brie Return)
(coh. deges)
(where i duality result that helps we compute these
highes dim cohomologies:
Borel - Some duality (for $Sln2$): $H^{(3)-i}(Sln2; \Omega) \cong H_{i}(Sln2; \OmegaS_{2}^{n})$
Here $D: Glo Conjecture$ $H^{(2)-i}(T_{1}; 2)$
The building

Similar result for (virtual) dueling groups in general.
In that case,
$$D = H^{vcd(G)}(G; ZG)$$