(Rational) Duality Groups and $H^{*}\left(S L_{n} 2 ; \mathbb{Q}\right)$

(I) Motivation: Calculating $H^{*}\left(S L_{n} 2 ; \mathbb{Q}\right)$

$$
H^{i}(S \ln 2 ; \mathbb{Q})
$$

(II) Group (CO)homology
Γ : Group, M : module over er
We can define (c) homology groups $H^{*}(\Gamma ; M)$ and $H_{*}(\Gamma ; M)$
(Above we're viewing \mathbb{Q} as a 2Γ-module with trivial Γ-action.)
Algebraically: Take a free (more generally, projective) resolution of a over ar

$$
\cdots \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow 2 \rightarrow 0
$$

\rightarrow For $H_{*}(\Gamma ; M)$, apply $-\otimes_{\mathbb{N}} M$ and take homologies Fact: $H_{0}(\Gamma ; M) \cong M_{a}=M /\left\langle m-\gamma_{m} \mid \gamma \in \Gamma\right\rangle$
\rightarrow For $H^{*}(r ; M)$, apply $\operatorname{Hom}_{2 r}(-, M)$ and take cohomologies Fact: $H^{\circ}(r ; M) \cong M^{a}=\langle m \mid \gamma m=m \quad \forall \gamma \in \Gamma\rangle$

Topologically: Suppose \exists contractible CW -complex x with $\Gamma \curvearrowright x$

$$
\text { Then } \begin{aligned}
& H_{*}(\Gamma ; M) \cong H_{*}(X / \Gamma ; M) \\
& H^{*}(\Gamma ; M) \cong H^{*}(X / \Gamma ; M)
\end{aligned}
$$

- free
- cellular

Upshot: If X is a "nice" space, we can use it to study algebraic properties of r, such as cohomological dimension.
(III) Cohomolagical dimension

Defn: (Cohomalogical dimension)
$c d(r):=\max \left\{n \mid H^{n}(r ; M) \neq 0\right.$ for a \mathbb{Z}-module $\left.M\right\}$

- (Rational cohomological dimension)

$$
c d_{\mathbb{Q}}(r):=\max \left\{n \mid H^{n}(r ; V) \neq 0 \text { for a } \mathbb{Q} \Gamma \text {-module } V\right\}
$$

Note: $c d_{\mathbb{Q}}(r) \leqslant c d(r)$
If \exists contractible x st. $\sin 2 \curvearrowright x$ freely + cellularly $s \cdot t \cdot \operatorname{dim} X=k$, then $c d(r) \leq k$.

Defy: Symmetric Space
$\sin 2 \curvearrowright S \ln \mathbb{R} / \operatorname{so}(n)=X_{n}$ "symmetric space"

$$
g \cdot A=g A g^{\top}
$$

$\operatorname{dim} x_{n}=\binom{n+1}{2}-1$
In fact, we can further "trim down" x_{n} to a space I_{n} of $\operatorname{dim}\binom{n}{2}$.

- $X_{n}\left(\right.$ and $\left.Y_{n}\right)$ is contractible
- action is not free! Problem: finite stabilizers

But if we pass to a torsion-free subgroup $\Gamma^{\prime} C S L_{n} 2$, then $\Gamma^{\prime} \curvearrowright X_{n}$ is free.
We can still selvage information from $\sin 2 \curvearrowright x_{n}$, by turning to rational coefficients.

Fact: [Sere] If $\left[\Gamma: \Gamma^{\prime}\right]<\infty$, then $c d_{\mathbb{Q}}\left(\Gamma^{\prime}\right)=c d_{\mathbb{Q}}(\Gamma)$
(The same holds for $c d(\Gamma)$ if Γ is torsion-free, which $\operatorname{Sin}_{n} 2$ is not)
Fact: $\sin 2$ has torsion-free subgroups of finite index ($\mathrm{Eg}:$ ger of $\sin 2 \rightarrow \sin (4 / p)$)
So from the above, we have $\operatorname{cd}_{\mathbb{Q}}(\sin 2) \leq\binom{ n}{2}$ (in fact, equality holds)
Thus $H^{i}(\operatorname{Sin} 2 ; \mathbb{Q})=0$ for $i>\binom{n}{2}$

Q: What about $i \leq\binom{ n}{2}$?
A: We can use a duality property
(IV) (Rational) Duality Groups

Defn: Let R be a ring (eg. \mathbb{Z} or \mathbb{Q}). We say T is a "duality group over R " if \exists integer k and $R \Gamma$-module D set. we have

$$
H^{i}(\Gamma ; M) \cong H_{k-i}\left(\Gamma ; D_{\uparrow} \otimes_{R} M\right)
$$

* RT -modules M dualising
module
(Here $\Gamma \curvearrowright D \otimes_{R} M$ diagonally, ie. $\gamma(d \otimes m)=d \gamma^{-1} \otimes \gamma m$.
In particular, $\left.\left(D \otimes_{R} M\right)_{\Gamma} \cong D \otimes_{R \Gamma} M\right)$
Rok: By plugging $M=R \Gamma$, we see that $D \cong H^{k}(T ; R \Gamma)$:

$$
\begin{aligned}
D=D \otimes_{R T} R \Gamma=\left(D \otimes_{R} R \Gamma\right)_{\Gamma} & =H_{0}\left(\Gamma ; D \otimes_{R} R \Gamma\right) \\
& \cong H^{k}(\Gamma ; R \Gamma)
\end{aligned}
$$

The: $S \ln \mathbb{Z}$ is a duality group over \mathbb{Q}.
Thus $H^{i}(S \ln 2 ; \mathbb{Q}) \cong H_{\binom{n}{2}-i}\left(S \ln 2 ; D \otimes_{\mathbb{Q}} \mathbb{Q}\right) \quad$ "Poincare duality with \quad a twisting of the coefficients"

Rok: "We can think of this as analogous to "Poincare duality with a twisting of the coefficients"

- Thus finding high dimensional cohomology of SLr 2 translates to finding low dimensional homology, albeit at the cost of a more complicated coefficient module - which we can hope to do by constructing partial resolutions.

Goal: Prove $S L_{n} X$ is a rational duality group

- Get a concrete description of the dualising module D. (Turns out to be $\operatorname{stn} \mathbb{Q} \otimes \mathbb{Q}$ "Steinberg, Module ")
For both these answers, well look at the action on symmetric space

$$
\operatorname{SLn} \mathbb{A} x_{n}=\operatorname{Sin} \mathbb{R} / S O(n)
$$

Because $\sin _{n} 2 \curvearrowright X_{n}$ is not free, wed like to be able to pass to a torsion-free subgroup.
Fact: If $\left[\Gamma^{\prime}\right]<\infty$, then Γ is a duality gp. over \mathbb{Q} iff Γ^{\prime} is (same holds for duality gp over \mathbb{C}, if Γ is torsion-free)
Fact: If Γ is a duality gp over $\mathbb{2}$, then Γ is a duality gp over \mathbb{Q} $\omega /$ dualising module $D \otimes_{2} \mathbb{Q}$

So our goal now is to prove any finite-index torsion-free $\Gamma^{\prime} \subset S L_{n} 2$ is a duality gp over 2 , and to find its dualising module.
Thu [Bier Eckmann] suppose $[$ is of type FP [ie. I has a finite length, finite type TFAE: prof res over 2T]
(1) Γ is a duality gp over 2
(2) $H^{i}(r ; 2 r)=0 \quad \forall \quad i \neq k$
$H^{k}(\Gamma ; 2 \Gamma)$ is torsion-free
(Glimpse of Proof) : Suppose $P_{k} \rightarrow P_{k-1} \rightarrow \ldots \rightarrow P_{1} \rightarrow P_{0} \rightarrow 2 \rightarrow 0$ is a finite length+type res.

$$
\begin{aligned}
& \text { Suppose } P_{k} \rightarrow P_{k-1} \rightarrow \ldots \rightarrow H^{k}(\Gamma ; 2 r) \leftarrow \operatorname{Hom}_{\text {}}\left(P_{k}, 2 \Gamma\right) \leftarrow \ldots \leftarrow \operatorname{Hom}_{m}\left(P_{0}, 2 r\right) \leftarrow 0 \text { is } \\
& (2)+\text { type } F P \Rightarrow \text { moiective resolution. }
\end{aligned}
$$

a projective resolution.
This allows US to calculate $H^{i}(\Gamma ; M)$ and $H_{k-i}(\Gamma ; D \otimes M)$ from the same resolution.

Updated Goal: $\Gamma^{\prime} \subset \sin 2$ fin index, torsion- free

- $H^{i}\left(\Gamma^{\prime} ; 2 r^{\prime}\right)=0 \forall i \neq\binom{ n}{2} \longrightarrow$ we want to relate these $H^{\binom{n}{2}}\left(\Gamma^{\prime} ; 2 \Gamma^{\prime}\right)$ torsion -free with untwisted, integral (colhomology of a topological space
Fact: If x is contractible and x / Γ^{\prime} pct, then

$$
H^{i}\left(r^{\prime} ; 2 r^{\prime}\right) \cong H_{c}^{i}(x ; 2)
$$

Problem: X_{n} / Γ^{\prime} is not compact in our case
Solution: Borel-Serre compactification

Thu [Borel-Serre] There exists a compactification $X_{n} \subset \bar{X}_{n}$ s.t:

- $x_{n} \longleftrightarrow \bar{x}_{n}$ is a homotopy equivalence
- \bar{X}_{n} / Γ is compact
- \bar{X}_{n} is a topological (not smooth) manifold of $\operatorname{dim}=\binom{n+1}{2}-1$
- $\partial \bar{X}_{n} \simeq \tau_{n} \mathbb{Q} \quad$ "Tits building"
- is a simplicial complex, $\simeq V S^{n-2}$

Thus, we now have:

$$
\begin{aligned}
& \text { Poincare nudity } \\
& H^{i}\left(\Gamma^{\prime} ; 2 \Gamma^{\prime}\right) \underset{\bar{\chi}}{=} H_{c}^{i}\left(\bar{X}_{n} ; 2\right) \stackrel{\text { for }}{=}{ }_{\substack{n \\
n+1 \\
2}} H_{(-i-1}\left(\bar{X}_{n}, \partial \bar{X}_{n} ; 2\right) \\
& \bar{x}_{w} / \Gamma^{1} \\
& \text { is pet } \\
& \text { Les of pair, } \\
& \stackrel{\bar{x}_{n} \simeq\{*\}}{=} H_{\binom{n+1}{2}-i-2}\left(\partial \bar{x}_{n} ; 2\right) \\
& \partial \bar{x}_{n} \simeq \tau_{n} \mathbb{Q} \\
& =H_{\binom{n+1}{2}-i-2}\left(\tau_{n} \mathbb{Q} ; 2\right)
\end{aligned}
$$

Since $\tau_{n} \mathbb{Q} \simeq V S^{n-2}, \quad H_{*}$ is concentrated in $\frac{\operatorname{deg} n-2}{}$ (and is free abelian for $\operatorname{deg} n-2$)
ie, precisely when:

$$
\begin{aligned}
& \binom{n+1}{2}-i-2=n-2 \\
& \Leftrightarrow i=\binom{n}{2}
\end{aligned}
$$

Thus: . sun e is a duality gp over \mathbb{Q}

- Dualising module $=H_{n-2}\left(\tau_{n} \mathbb{Q} ; 2\right) \otimes \mathbb{Q}=\underbrace{S t_{n} \mathbb{Q}}_{\substack{\text { "Steinberg } \\ \text { module }}} \otimes \mathbb{Q}$
(Time Permitting:)
(V) The Tits Building $\tau_{n}(\mathbb{Q})$

Vertices $\longleftrightarrow 0 \underset{\not \subset}{\subset} \mathbb{Q}^{n} \quad$ proper subspaces
p-simplicee \longleftrightarrow Flogs of subspaces

$$
0 \underset{+}{c} V_{0} c_{+} V_{1} c_{+} \cdots c_{+} V_{p} c_{\mp} \mathbb{Q}^{n}
$$

$$
\operatorname{dim} \tau_{n} \mathbb{Q}=n-2
$$

Eg: Suppose $\left\langle v_{1}, v_{2}, v_{3}\right\rangle=\mathbb{Q}^{3}$. Then the following is a subcomplex of $\tau_{3} \mathbb{Q}$:

"apartment classes"

The: [Solomo n-Tits] $\tau_{n} \mathbb{Q} \simeq V S^{n-2}$
$S t_{n} Q=H_{n-2}\left(\tau_{n} \mathbb{Q} ; 2\right)$ is generated by apartment classes.

Note: $\quad \operatorname{Sin}_{n} \curvearrowright \curvearrowright \tau_{n} \mathbb{Q}$, so $\operatorname{stn} \mathbb{Q} \otimes \mathbb{Q}$ is a $\mathbb{Q}[\sin 2]$-module.

A picture to see how $\partial \bar{X}_{2} \simeq \tau_{2} \mathbb{Q}$:
Note: $\tau_{2} \mathbb{Q}=\mathbb{Q} \cup\{\infty\} \quad$ (discrete set of vertices)

$$
\mathrm{SL}_{2} \mathbb{S} \cong \mathrm{SL}_{2} \mathbb{R} / \mathrm{SO}_{2} \cong \mathrm{H}^{2}
$$

$S L_{2} \mathbb{R} \curvearrowright H^{2}$ by fractional linear maps, transitively

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=\frac{a z+b}{c z+d} \\
& \operatorname{stab}(i)=\mathrm{SO}_{2}
\end{aligned}
$$

Disk Model of H^{2} : Consider the following tiling of the disk by triangles:

Here we started with the large center triangle, and obtained more triangles by successively reflecting each vertex about the opposite eide. Alternate triangles are shaded here in orange.

Rok: These triangles are preserved by the $S_{2} 2$-action (Using generators $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ for $\mathrm{SL}_{2} 2$)

Note: The "corners" on the boundary circle are not in H^{2}, but we can add them in without changing the homotopy type.
The resulting quotient $\bar{x}_{2} \mid \sin _{2} 2$ is also compact.
The added points exactly correspond to $\mathbb{Q} \cup\{\infty\}$, so

$$
\partial \bar{x}_{2} \simeq \tau_{2} \mathbb{Q}
$$

