(hational) Duality Groups and H*(SLn 2; Q)

Upshot: If X is a "nice" space, we can use it to study algebraic properties of Γ , such as <u>cohomological dimension</u>.

Cohomological dimension

Defin: (cohomological dimension)

$$cd_{i}(\Gamma) := \max \{n \mid H^{n}(\Gamma; M) \neq 0 \text{ for a } 2\Gamma \text{-module } M \}$$

 $\cdot (Rational cohomological dimension)$
 $cd_{ij}(\Gamma) := \max \{n \mid H^{n}(\Gamma; V) \neq 0 \text{ for a } (R\Gamma \text{-module } V \}$
Note: $cd_{ij}(\Gamma) \leq cd(\Gamma)$
If 3 contractible X set $Sl_{in} \geq \infty \times \text{freely} + cellularlyt set dim X = k,$
then $cd(\Gamma) \leq k$.
Defin: Symmetric Space
 $Sl_{in} \geq \alpha \times Sl_{in} R / so(n) = X_{in}$ "symmetric space"
 $g \cdot A = gAg^{T}$
 $dim X_{n} = \binom{m+1}{2} - 1$
In fact, we can firther "trim down" X_{in} to a space Y_{in} of $\underline{dim}\binom{n}{2}$.
 $\cdot X_{in} (and Y_{in})$ is contractible
 $\cdot action is nat free! Arothem: firste stabilizers
But if we pass to a insim-free eulogroup $\Gamma^{i} \subset Sl_{in} \geq 1$ then
 $\Gamma^{i} \propto X_{in}$ is free.
We can takl salvage information form $Sl_{in} \geq \alpha \times X_{in}$, by turning to
 $intoreal coefficients.$
Fort:: [Sere] If $[\Gamma:\Gamma^{i}] < \infty$, then $cd_{in} (\Gamma^{i}) = cd_{in} (\Gamma)$
 $(The scowe helds for $cd(\Gamma)$ if Γ is traism-free, which $Sl_{in} \geq i = not$)
for $t: sl_{in} \geq los traism-free autogroups of finite index ($Eg: ker of su_{in} \rightarrow sim(Np)$)
So form the above, we have $[cd_{in}(2) \leq \binom{n}{2}]$ (in fact, equality holds)
Thus $H^{i}(Sl_{in} 2; \Omega) = 0$ for $i > \binom{n}{2}$$$$

(II) (Rational) Duality Groups

$$\frac{k_{m}k}{D} = D \otimes_{R\Gamma} R\Gamma = (D \otimes_{R} R\Gamma)_{\Gamma} = H_{0}(\Gamma; D \otimes_{R} R\Gamma) \\ \cong H^{k}(\Gamma; R\Gamma)$$

$$\frac{T_{hm}}{T_{hus}} : S_{h} \mathcal{Z} \text{ is a duality group over } (R.$$

$$T_{hus} H^{i}(S_{h} \mathcal{Z}; R) \cong H_{(2)-i}(S_{h} \mathcal{Z}; D \otimes_{Q} R) \qquad \text{a twisting of the coefficients'}$$

•Thue finding high dimensional cohomology of SLn 2 translates to finding low dimensional homology - albeit at the cost of a more complicated coefficient module - which we can hope to do by constructing partial resolutions.

For both these answers, we'll look at the action on symmetric space

because sin 2 ~ ~ is not free, we'd like to be able to pass to a torsion-free subgroup.

<u>Fact</u>: If Γ is a duality qp over \mathbb{Z} , then Γ is a duality qp over \mathbb{Q} w/ dualising module $D\otimes_{\mathbb{Z}}\mathbb{Q}$

So our pool now is to prove any finit index train-free
$$\Gamma' \in Sin 2$$
 is
a duality of over 2, and to find its dualising module:
This [Birn Ecknown] Suppose Γ is of type FP [ie 2 has a finite length, but type
TFAE:
(2) Γ is a duality of over 2
(2) $H'(\Gamma; 2\Gamma) = 0 + if K$
 $H'(\Gamma; 2\Gamma)$ is training free
(Alingue of hood): Suppose $f_{i} = f_{i} \to \cdots \to f_{i} \to f_{i} \to 2 \to 0$ is a finite length type res-
(2) + type FP \Rightarrow $H^{i}(\Gamma; 2\Gamma) \in toolfs, 2\Gamma) \in \cdots$ toolfs, 2T) \cap is
 $rise allows us to calculate $H(\Gamma; M)$ and $H_{i}(\Gamma; DBM)$ from
the same realiston.
Updated Goal : $\Gamma' \in Sin 2$ finitudes, taxion free
 $H^{i}(\Gamma'; 2\Gamma') = 0 + i + f_{i}(2) \longrightarrow$ we used to relate these
 $H^{i}(\Gamma'; 2\Gamma') = H^{i}(X; 2)$
find the same realiston.
 $H^{i}(\Gamma'; 2\Gamma') \equiv H^{i}(X; 2)$
find the same realiston.
 $H^{i}(\Gamma'; 2\Gamma') \equiv H^{i}(X; 2)$
find the same compact in our case
Solution: $Kn(\Gamma' is compact in our case
 $Sinther: Kn(\Gamma' is compact in our case
 $Sinther: Kn(\Gamma' is a homotopy equivalence
 $N_{i}(\Gamma i; 2\Gamma') \equiv H^{i}_{i}(X; 2)$
Thus, we now have:
 $H^{i}(\Gamma'; 2\Gamma') \equiv H^{i}_{i}(X; 2) \equiv H^{i}_{i}(X; 3)$
Thus, we now have:
 $H^{i}(\Gamma'; 2\Gamma') \equiv H^{i}_{i}(X; 3) \equiv H^{i}_{i}(Y; 3) = H^{i}_{i}(X; 3)$
 $K_{i}(\Gamma' i = Compact in our case builty
 $H^{i}(\Gamma'; 2\Gamma') \equiv H^{i}_{i}(X; 3) \equiv H^{i}_{i}(Y; 3) = H^{i}_{i}(X; 3)$
Thus, we now have:
 $H^{i}_{i}(\Gamma'; 2\Gamma') \equiv H^{i}_{i}(X; 3) \equiv H^{i}_{i}(Y; 1) = H^{i}_{i}(X; 3) = H^{i}_{i}(Y; 1) = H^{i}_{i}(X; 3)$
 $K_{i}(\Gamma' i = Compact in the subling in the subling in the sublimation $K_{i}(T; 2\pi) = H^{i}_{i}(X; 3) \equiv H^{i}_{i}(Y; 1) = H^{i}_{i}(X; 3) = H^{i}_{i}(Y; 1) = H^{i}_{i}(Y; 3) = H^{i}_{i}(Y; 1) = H^{i}_{i}(Y; 3) = H^{i}_{i}(Y; 1) = H^{i}_{i}(Y; 3) = H^{i}_{i}(Y; 3) = H^{i}_{i}(Y; 3) =$$$$$$$

$$\frac{\partial \bar{x}_{n} \simeq \zeta_{n} Q}{=} H_{\binom{n+i}{2} - i - 2} \left(\zeta_{n} Q; 2 \right)$$

Since $T_n \mathcal{R} \simeq V S^{n-2}$, H_{μ} is concentrated in deg n-2 (and is free abelian for deg n-2) ie, precisely when: $\binom{n+1}{2}$ - i - 2 = n - 2 $\langle \Rightarrow | i = \binom{n}{2}$ Thus: . sin 2 is a duality gp over Q · Dualising module = Hn-2(Zn Q; 2) ⊗Q = Stn Q ⊗ Q "Steinberg module" (Time Permitting;) The Tits Building In(R) (\mathbb{X}) Vertices $\leftrightarrow 0 \neq V \neq \mathbb{Q}^n$ proper subspaces $\frac{p - simplicee}{0 \neq v_0 \neq v_1 \neq \dots \neq v_p \neq \mathbb{R}^n}$ dim Tn Q = n-2 Eq: suppose $\langle V_1, V_2, V_3 \rangle = \mathbb{R}^3$. Then the following is a subcomplex of $\mathbb{Z}_3\mathbb{Q}$:

 </l Thm: [Solomon-Tits] Zn Q ~ V Sn2 $St_{n}(R = H_{n-2}(T_nR; 2)$ is generated by apartment classes. Note: SINZ ~ TNR, so StnR&R is a R[SINZ] - module

A picture to see how
$$\partial \overline{X_2} \simeq \overline{C_2} Q$$
:
Note: $\overline{C_2} Q = Q \cup \{ \infty \}$ (discrete set of vertices)
 $SL_2 Q \rightarrow SL_2 R / SO_2 \cong H^2$
 $SL_2 R \rightarrow H^2$ by fractional linear maps, transitively
 $\begin{pmatrix} 0 & b \\ c & d \end{pmatrix} \cdot 2 = \frac{a_2 + b}{c_2 + d}$
 $Stab(i) = SO_2$

Here we started with the large center triangle, and obtained more triangles by successively reflecting each vertex about the opposite side. Alternate triangles are shaded here in orange.

- Kmk: These triangles are preserved by the SL2 action (Using generators (? ~), (",") for she)
- <u>Note</u>: The "corners" on the boundary circle are not in 1H², but we can add them in without changing the homotopy type. The resulting quotient $\overline{X}_2/\sin 2$ is also compact. The added points exactly correspond to $\mathbb{R} \cup \{\infty\}$, so $\partial \overline{X}_2 \simeq \overline{\zeta}_2 \mathbb{R}$