Remarks:

not allowing curves ~* or peripheral to a puncture or boundary component (these curves would be disjoint from everything and hence cone off the curve complex)
 → C(S^k_{q,n}) ~ C(S<sup>k_{q,n}) ~ C(S^{k_{q,n}}) ~ C(S<sup>k_{q,n}) ~ C(S^{k_{q,n}}) ~ C(S<sup>k_{q,n}) ~ C(S^{k_{q,n}}) ~ C(S<sup>k_{q,n}) ~ C(S^{k_{q,n})}
</sup></sup></sup></sup>

Theorem [Haver '86]

$$C(s_{q,n}) \simeq \bigvee S^{m}$$

$$m = \begin{cases} n-4 & \text{if } q=0 \\ 2q-2 & \text{if } q\geq 1, n=0 \\ 2q-3+n & \text{if } q\geq 1, n\neq 0 \end{cases}$$

$$\dim(C(s_{q,n})) = 3q+n-4 \quad (\text{because we need } 3q+n-3 \\ \text{curves for a parts decomposition})$$

$$\text{Proof consists of two main parts : (1) Inducting on n}$$

$$(2) \text{ Base Cases of } n=0, 1$$

(I) Recursive Structure of
$$C(S_{q,n})$$
: Inducting on n
Rep": If $n \ge 2$, then $C(S_{q,n}) \simeq A_{q,n} * C(S_{q,n-1})$
discorde set
Idea: Want to define a "forget a point" map $C(S_{q,n}) \rightarrow C(S_{q,n})$
But we can't define this on all of $C(S_{q,n})$
But we can't define this on all of $C(S_{q,n})$
Let $X_{q,n} \subset C(S_{q,n})$: subcomplex spanned by "good coves"
(Thus we have a "forget a pt" map $X_{q,n} \stackrel{*}{\to} C(S_{q,n-1})$)
Ap $\subset C(S_{q,n})$: subcomplex spanned by "bod coves"
(Thus we have a "forget a pt" map $X_{q,n} \stackrel{*}{\to} C(S_{q,n-1})$)
Ap $\subset C(S_{q,n})$: subcomplex spanned by "bod coves"
Note: bad conves are exactly the ones peripheral to an
arc joining p and another purchase
No two such conves can be disjoint, and so
Ap is a discrete set.
Thue, $C(S_{q,n}) \subset Ap * X_{q,n}$

We'll show that:
$$C(S_{q,n}) \sim A_{p} * \chi_{q,n} \sim A_{p} * C(S_{q,n-1})$$

We will need the following Lemma, whose proof can be found in Section
$$\overline{V}$$
:

Lemma: X any simplicial complex
A any discrete set

$$Y \subset A * X$$
 and $A, X \subseteq Y$ s.t.
 $\forall a \in A, lk_{Y}(a) \hookrightarrow X$ is a htpy equiv.
Then $Y \hookrightarrow A * X$ is a htpy equiv.

For
$$u$$
, $Y = C(S_{q,n})$, $A = A_p$, $X = \chi_{q,n}$
For $\gamma \in A_p$, consider
 $lk_{C(S_{q,n})} \xrightarrow{\gamma} \chi_{q,n} \xrightarrow{f} C(S_{q,n-1})$

We'll show that :
$$\cdot$$
 for is a simplicial iso \cdot_{k} is surjective on all Π_{k}

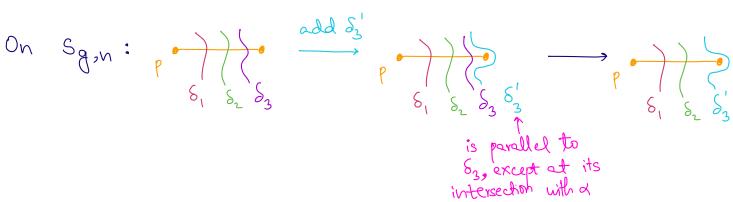
This will imply that both
$$r$$
, f are htpy equiv.
(as they induce isos on TT_k), and using
the Lemma, we will get
 $C(Sg,n) \simeq Ap * Xg,n \simeq Ap * C(Sg,n-i)$

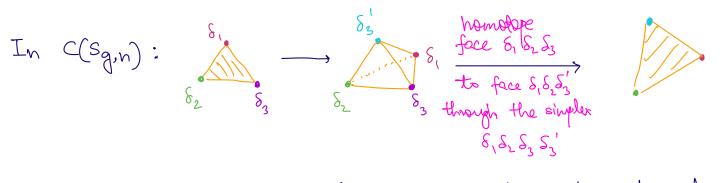
Let a be the arc that
$$\gamma$$

is peripheral to.
Now, the link of γ is spanned by all curves
disjoint to γ . All such curve systems must
avoid passing through the interior of the disk
bounded by γ .
We can identify such curve systems as curve
systems on $S'_{q,m-2}$, which is iso to the curve
complex on $S'_{q,m-2}$, which is iso to the curve
complex on $S'_{q,m-1}$.
Thus $U_{C}(S_{q,m}) \cong C(S_{q,m-1})$. Note that
the composition $U_{C}(S_{q,m}) \xrightarrow{f} C(S_{q,m-1})$
realises this simplicial iso.
Thus u_{k} is injective on TT_{k} 's.
For surjectivity, we use an idea of Hatcher,
called "Hatcher flaw".

Here's the idea :

Here's the idea of Hatcher flow:





Continue in this way until all curves have been homotoped off of d.

Thus, we have proved that for
$$n \ge 2$$
, $C(S_{g,n}) \cong A_{p} + C(S_{g,n-1})$
so if $C(S_{g,n-1}) \cong VS^{m}$, then $C(S_{g,n})$ will be $\cong VS^{m+1}$.
It now remains to deal with the base cases of $n = 0, 1$.
And the n = 1 we do have a "forget a pt' map $f: C(S_{g,n}) \rightarrow C(S_{g,n})$,
but no bad curves. In fact, in this case f is a htpp
equiv, as we will see in Section IV.
There's theorem cays that $C(S_{g,1}) \cong VS^{2}g^{-2}$ and $C(S_{g,n}) \cong VS^{2}g^{-2}$
When $n=1$, we have a well-defined "forget a point" map
 $C(S_{g,n}) \stackrel{f}{\longrightarrow} C(S_{g,n})$, but no bad curves.
The stream the same homotopy equivalence
Note that dim $C(S_{g,n}) = 3g^{-3}$ and dim $C(S_{g,n}) = 2g^{-4}$,
though they have the same homotopy equivalence
Note that dim $C(S_{g,n}) = 3g^{-3}$ and dim $C(S_{g,n}) = 2g^{-4}$,
though they have the same homotopy dim of $2g^{-2}$.
The extra dimension arises from the fact that the puncture
creates an added isotopy class of curves.
Thus, forgetting the puncture corresponds to collapsing some
simplices of $C(S_{g,1})$ down by a dimension.
The above theorem - whose proof is in Section IV -
says that this collapsing of simplices does not change
the homotopy type of $C(S_{g,1})$.

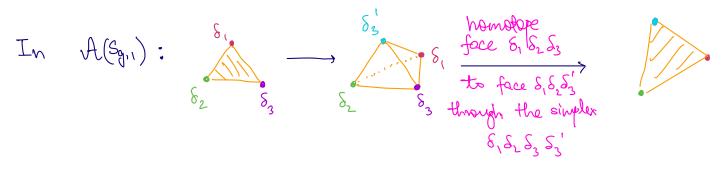
Assuming that
$$C(Sq,i) \simeq C(Sq,o)$$
, we will prove that:
(1) $C(Sq,i)$ is $(2q-3)$ -connected
(2) $C(Sq,o)$ has vanishing H_* in deg = $2q-1$
This will prove that $C(Sq,i) \simeq V S^2q^{-2} \simeq C(Sq,o)$
IIT. 1 : $C(Sq,i)$ is $(2q-3)$ -connected
We will show that $C(Sq,i)$ is $\simeq H_{\infty}$, where
thoo is "the arc complex at ∞ ", and show the is
 $(2q-3)$ -connected.
Step 1: A_{∞} is $(2q-3)$ connected
Defn: The Arc Complex A $(n \ge 1)$
K-singlices \iff 'arc systems'
Will arcs displicit except morple at endpts
Defn: The arc complex at infinity the
Non-filling
A filling arc system: cuts Sq,in into disks : (2) or (1)

As : subcomplex of A spanned by non-filling arc
systems
An Euler characteristic argument shows that we need
$$\geq 2q$$
 arcs in any filling arc system.
Thus, $A^{(2q-2)} \subset A_{\infty}$.
Thus, $A^{(2q-2)} \subset A_{\infty}$.
This can be shown via a Hatcher flow argument, as
described below.
Since As contains the $(2q-2)$ -skeleton of a contractible
simplicial complex, it follows that A_{∞} is $(2q-3)$ -connected
Hatcher flow on A

Want to show that any (simplicial) map
$$\Psi: S^k \rightarrow A$$

is nullhomotopic.
Fix an arc α . Will homotope Ψ so its implies in led.
We'll then be able to nullhomotope Ψ so its implies α .

is parallel to Sz, except at its intersection with a

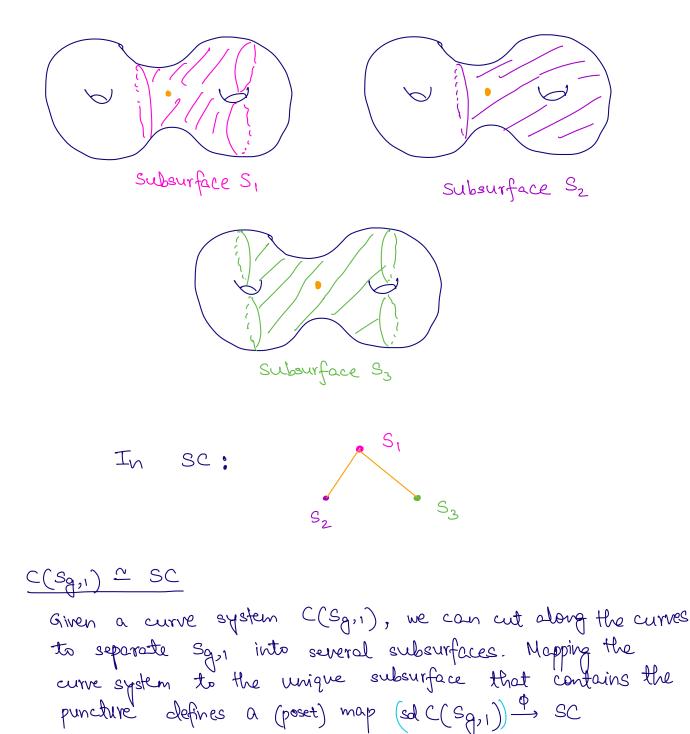


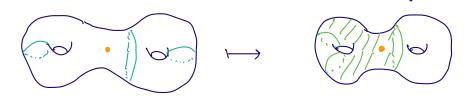
Continue in this way until all arcs have been homotoped off of d.

Step 2: C(Sg,1) ~ A.

- We will work with the banycentric subdivisions of these complexes. Thus vertices correspond to curve (arc) systems and k-simplices correspond to flags of (k+1) curve (arc) systems.
- We will use the following Theorem due to Quillen, whose proof is in section I:
- <u>Quillen Fiber Lemma</u>: A poset map $\varphi: P \rightarrow Q$ is a homotopy equivif all fibers $\varphi_{\leq Q}$ (= $\geq P \in P : \varphi(P) \leq Q \geq Q$) are contractible

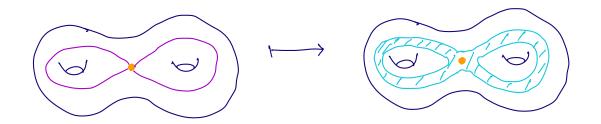
We will apply this Lemma twice. We'll define the "subsurface complex" SC, and use the Lemma to construct htpy equiv. $C(S_{g,1}) \rightarrow SC$ and $A_{\infty} \rightarrow SC$





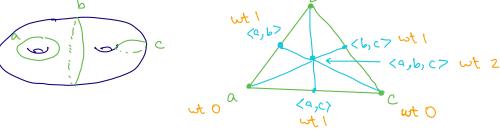
This is an order - reversing poset map. Each downward fiber $\varphi_{\leq S}$ is a cone with one point given by the curve system corresponding to ∂S . Thus $\underline{C(Sq,1)} \cong SC$ A_{oo} ~ SC

Given an arc system, taking the union of annular neighbourhoods of each arc gives a subsurface. Thus we get an order-preserving poset map 4: An SC Each downward fiber YES consists of arc systems on the (punctured) surface S, and is thus $\cong A(S)$, which is contractible. Thus A_∞ ~ SC



$$\underline{\mathbb{H}} \cdot 2 : H_*(C(S_{q,0})) = 0 \text{ for } * \geq 2q-1$$

We shall work with the barycentric subdivision of C(Sq, 0). Let X = sd(C(Sq, 0)). Thus vertices of X correspond to curve systems on Sq, 0, and simplices correspond to flags of curve systems.

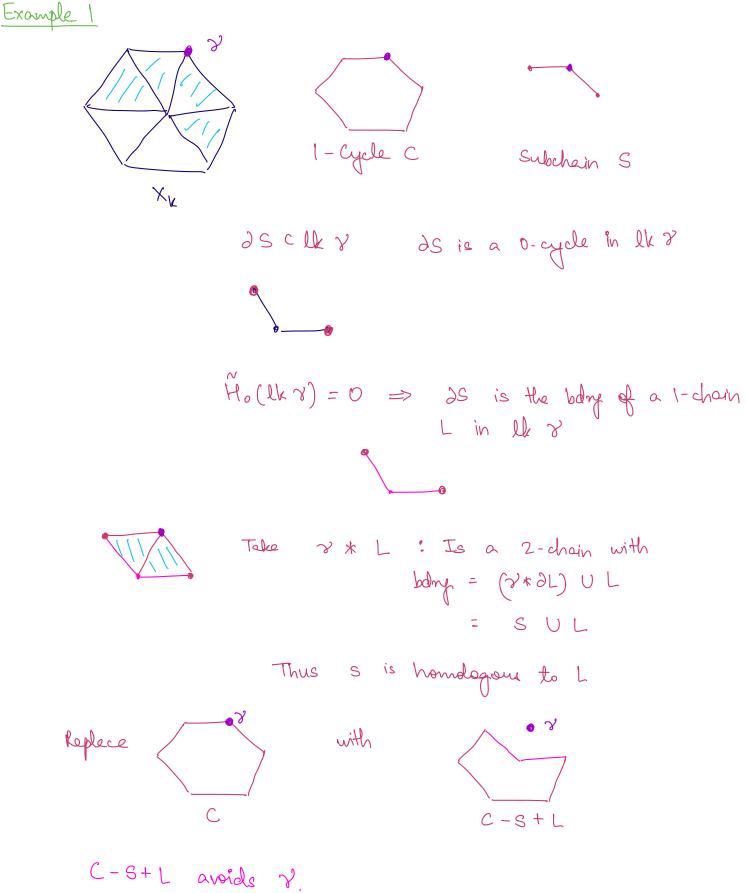


To each vertex of X, we can assign a weight. Vertices corresponding to a 1-curve system have wt O, those for a 2-curve system have wt 2, and so on. Let $X_{k} :=$ subcomplex of X spanned by the weight $\geq k$ vertices. Thus $X_{0} = X$, and X_{3q-4} is a discrete set of vertices.

Note that for a vertex
$$\gamma$$
 in X_k of weight k , $lk_{X_k} \gamma \subset X_{k+1}$.
Thus X_k is built out of X_{k+1} by coning off subcomplexes of X_{k+1} .
Here is a crucial Lemma for our argument:
Lemma: For a wt k vertex γ in X_k , its link is $\simeq VS^m$, where
 $m \leq 2g-3$.
In particular, $H_{*}(lk_{X_k}\gamma) = 0$ for $* \geq 2g-2$

We defer the proof of this Lemma to the end of this Section. Assuming this Lemma, our next crucial claim is as follows:

- Claim: suppose γ is a wt k vertex, and let C be a representative of a simplicial l-cycle in X_k . Thus $C = n_i \sigma_i + \dots + n_r \sigma_r$ for l-simplices $\sigma_1, \dots, \sigma_r$, with $l \ge 2g-1$. Then we can replace C with a homologous chain so that none of the σ_i have γ as a vertex (and so that don't increase the number of wt k vertices appearing on simplices in the chain.)
 - Proof: While reading the proof, it may help to also look at the pictorial examples that follow, that illustrate the proof idea. Let C = N.T. to use the lab C be the subability of C
 - Let $C = n_1 \overline{0}_1 + \dots + n_{\overline{0}_{T-1}}$. Let S be the subchain of C spanned by simplices having γ as a vertex. Assume WLOG that $S = n_1 \overline{0}_1 + \dots + N_{\pm} \overline{0}_{\pm}$. Note that $\partial S \subset \operatorname{star}(\gamma)$. In fact, since C is a cycle, we can argue that $\partial S \operatorname{does}$ not intersect with γ , and thus $\partial S \subset \operatorname{lk}(\gamma)$. Also, since $\partial(\partial S) = 0$, ∂S is a (l-1)-cycle in $l k \gamma$. Since $l-1 \ge (2q-1) - 1 = 2q-2$. Thus by the preceeding Lemma, $H_{e-1}(l k(\gamma)) = 0$. Thus ∂S is the bdry of some l-chain L in $l k(\gamma)$. Now, consider the (l+1)-chain $\gamma \neq L$. It's bdry is $\gamma \neq \partial L - L = \gamma \neq \partial S - L = S - L$. Thus S is homologoue to L. Replacing C by C - S + L, the claim follows.





Proof of C(Sq,1)~C(Sq,0) The forget a point map from $C(S_{g,1}) \rightarrow C(S_{g,0})$ is a homotopy equivalence. This can be proved using Quiller's Fiber Lemma. For a full proof, see Hatcher-Vogtman "Tethers & Hom. Stability for surfaces", section 4 Prop 4.7.

Appendix

$$(I) The A * X Lemma
Lemma: X: any simplicial complex, A: any discrete set
 $Y \subset A * X$ and $A, X \subseteq Y$ s.t. $*a \in A$,
 $lk_{q}(a) \hookrightarrow X$ is a htpy equiv.
Then $Y \hookrightarrow A * X$ is a htpy equiv.$$

Thus
$$Y \subset \{a\} \times X$$
. Now $lk_{y}(a) \xrightarrow{\sim} X$ implies
that X deformation retracts to $lk_{y}(a)$.
We can use this retraction to deformation retract
 $\{a\} \times X$ to Y. Thus $Y \xrightarrow{\sim} \{a\} \times X$

We prove this Lemma at the end of the proof.
To apply it to our case, we read only show that

$$4'n4' \rightarrow (h' \times x)n(jan 3 \times x)$$
 is a htp equi-
Note: $4'n4'' = (le(a_1)n(le(a_1)) \cup ... \cup (le(a_{n-1})n(le(a_n)))$
 $(h' \times x)n(jan 3 \times x) = x$
We can use the Matter Lemma combined with the following lemma
to show that $4'n4'' \rightarrow (h' \times x)n(jan 3 \times x)$ is a htp equi-
lemma: If $P \stackrel{o}{=} R$ and $Q \stackrel{o}{=} R$, then $PnQ \stackrel{o}{=} R$
 $\frac{Pf}{:}$ Use excision on T_K to argue that
 $T_K(P, PnQ) \cong T_K(R, Q) \cong 0$ for all k .
 $T_{NLP}(PnQ \stackrel{o}{=} P \stackrel{o}{=} R$
Since $lk(a_1) \stackrel{o}{=} x$.
We can now repeatedly use the Matter Lemma and the
above accision lemma to argue that $(le(a_1)n(le(a_1))! \cup (le(a_{n-1})n(le(a_{n-1}))) \rightarrow x$
is a homotogy equi-
 $Rrod of the Matter Lemma
We will use the fact that $F: x \rightarrow 4$ is a htp equi-
 $Rrod of the Matter Lemma
We can now repeatedly use have $F: x \cup 4 \rightarrow W \cup 2$.
Fixing is a htp equi-
 $Rrod of the Matter Lemma
We will use the fact that $F: x \rightarrow 4$ is a htp equi-
 $Rrod of the Matter Lemma
We will use the fact that $F: x \rightarrow 4$ is a htp equi-
 $Rrod of the Matter Lemma
We mapping equives an $(R(F) deformation retracts to X)$.
In the setting of the Lemma, we have $F: x \cup 4 \rightarrow W \cup 2$.
 F_{IXA} is a $M_{IP} = equi- x = 0$ (F_{IXA}) deformation retracts to
 $x \cap 4$. Thus we have $H: M(F_{IXA}) \times T \rightarrow M(F_{IXA}) \to 1$.
He reducted to $M(F_{INA}) \times T \rightarrow M(F_{IXA}) \to 1$.
Use the homotopy extension property of CW -complexes to extend
H to $H: M(F_{IX}) \times T \rightarrow M(F_{IX}) \times T \cap M(F_{IXA}) \times T \cap M(F_{IXA})$.
Now extend \overline{H} to $H: M(F_{IX}) \times T \cap M(F_{IX}) \times M(F_{IX}) \to M(F_{I$$$$$$

I Quillen's Fiber Lemma

Thm: A poset map
$$\Phi: P \rightarrow Q$$
 is a homotopy equiv-
if all fibers $\Phi_{\leq Q}$ (= $\geq P \in P : \Phi(P) \leq Q \geq Q$) are
contractible.

$$\frac{Proof}{Proof}: We'll use the $\varphi_{\leq q} \simeq \star \text{ condition to construct}$
a homotopy inverse $q: \Lambda(Q) \rightarrow \Lambda(P)$ ($\Lambda(P)$ is the
simplicial complex associated to the poset P)
Step 1: Constructing $q$$$

We'll construct
$$q$$
 skeleton by skeleton.
On Vertices: vertices \leftrightarrow ells $q \in Q$.
 $P_{\leq q} \simeq \kappa$, hence is non-empty, so
pick $q(q) \in \varphi_{\leq q}$

On 2-simplices: 2-simplice
$$\leftrightarrow 20 < 21 < 92$$

 $\Psi_{\leq 22}$ is 1-conn., thus we
can fill in the loop formed by
 $9(20 < 21), 9(21 < 92), 9(20 < 22)$
with a disk.
Map $20 < 21 < 92$ to this disk

Step 2: Checking
$$\phi$$
, g are homotopy inverses
We want to show $g \circ \phi \simeq id_{\mathcal{N}(\mathcal{P})}$ and $\phi \circ g \simeq id_{\mathcal{A}(\mathcal{Q})}$.
We'll condenct a homotopy $g \circ \phi \simeq id_{\mathcal{N}(\mathcal{P})}$ skeleton-
by-skeleton. The $\phi \circ g$ case will be similar.

On Vertices: Note that
$$p$$
, $g \circ \Phi(p) \in \Phi_{\leq \Phi(p)} \simeq *$
Thus there is a path joining p and $g \circ \Phi(p)$
Use this path to homotope $g \circ \Phi(p)$ to p .

On Edges: Suppose
$$Po < Pi$$
 is an edge.
The paths $[Po, Pi]$, $[Pi, go \Phi(Pi)]$, $[go \Phi(Pi)]$, $go \Phi(Po)]$,
 $Ego \Phi(Po)$, $Po]$ bound a disk in $\Phi_{\leq} \Phi(Pi) \simeq *$.
Homotope $[Po, Pi]$ to $[go \Phi(Po), go \Phi(Pi)]$
using this disk.