* We are working only with discrete groups in this note.

Boundary maps:
$$\partial(n\sigma) = \sum_{j=0}^{n} (-ij^{j}n_{e_{1}\sigma_{0}\cdots_{j}\tilde{v}_{j},\cdots_{j}v_{n}]} \sigma_{1}\sigma_{v_{0}\cdots_{j}\tilde{v}_{j},\cdots_{j}v_{n}]}$$

Check: $\partial^{2} = 0$
Thus $H_{*}(X;E) := H_{*}(C_{*}(X;E), \partial)$

Quick Example: If $E \rightarrow X$ is the trivial product bundle $X \times G$, then the above definition recoverse $H_*(X; G)$ for an abelian group G.

where $P(G)_{[V_0,V_1,...,\hat{V_j}]}$, ..., V_{n+1}] refers to the lift of G whose restriction to the face $[V_0,V_1,...,\hat{V_j}]$, ..., V_{n+1}] gives $Q(G_{1}_{[V_0,V_1,...,\hat{V_j}]},...,V_{n+1})$ $M P(e_1)$ $M P(e_2)$ Q(G)(G) is the sum (upto \pm signe) of the three simplices in green $Q(e_2)$

Quick Example: As before, if E ≅ X×G, then this defor recovere the usual defor of H"(X;G) for G abelian.

(2) Equivalence with coefficients in a TT, X - module:

For a given $2[TI_1X]$ -module G, there is a unique (upto iso) burdle of gps E-X over X w] fibre G that induces this given action of TI_1X on G. We shall show that (co) homology w] coeffs in G is the same as that w] coeffs in the bundle E. Note further that E can be conditucted as the quatient of $\tilde{X} \times G$ by TI_1X acting diagonally. Thus an n-simplex σ of E corresponde to the orbit of a pair ($\tilde{\sigma}, q$) in $\tilde{X} \times G$ under TI_1X .

(1) <u>Homology</u>: Identify $C_n(X; G)$ with $C_n(X; E)$ as follows: – Take mo $\in C_n(X; E)$. Thus $\sigma : \mathbb{N} \to X$ is an n-simplex and m is a lift of σ to E. Then m corresponds to the orbit of a pair

$$(\delta, q) \in X \times G$$
, where $\tilde{\sigma}$ is a lift of σ .
We can read $m \sigma \mapsto \tilde{\sigma} \otimes q$
This is well-defined since $\tilde{\sigma} \tilde{\sigma} \otimes \tau q = \tilde{\sigma} \otimes \tilde{\sigma}^{\dagger} \tau q$
 $= \tilde{\sigma} \otimes q$

(2) <u>Cohomology</u>: Identify C⁽(X; E) with C⁽(X; G)) as follows: hiven Q ∈ C⁽(X; E), q assigns to each n-simplex 6 of X a lift in E, which is equivelent to assigning of the orbit of LOWNE (8, g) ∈ X×G where 8 is a lift of O. The image of Q in C⁽(X; G)) is a function that maps 8 → g. Note that since (88, 79) is in the same orbit, this means 88 → 89, so this is an all of Hom_{2TIX}(C(X), 6). It is well-defined because each n-simplex of X is a lift of an n-simplex of X (for eq it is a lift of its projected image in X)

III) <u>Properties</u>

(1) for (co)homology w/ coeffe in a bundle, we can adapt many of the define & results for ordinary singular (co)homology and prove:

- Induced maps f^t, f_t on (co)hom. by bundle maps f
 Homotopy invariance of induced maps
- · (Co)homology of a pair (X, A); hence LES of a pair
- · Excilion
- · Simplicial & cellular (co)homology w/ bundle coeffe
- · Equiv of simplicial /cellular with singular

For many of these properties, the key idea that came over is that we can perform constructions like banglentre subdivision, prism operator, etc. on simplice on X as before equito prove excision equito prove homotopy equivalence

(2) Coeffs in $\mathbb{Z}[\pi]$ ($\pi = \pi_i X$)

Hn(X; 2[TT]) ≅ Hn(X; 2)
 More generally, let T'CTT be a subgp, and X'→ X the cores
 corresponding to it.
 Then Hn(X; 2[TT/π']) ≅ Hn(X'; 2)
 Even more generally, for an abelian gp A, Hn(X; A[TT/T']) ≅ Hn(X'; A)

cohomology. The fund class we construct lies in $H_n(M; \tilde{Z})$. Because multiplication w

i sweepe real and imaginary parts, the duality iso

$$H^{k}(M; 2[i]) \cong H_{n-k}(M; 2[i])$$

actually splits into reparate isos:
 $H^{k}(M; 2) \cong H_{n-k}(M; 2)$, $H^{k}(M; 2) \cong H_{n-k}(M; 2)$
This is the tristing of coefficients alluded to earlier.

So now whet's left is to construct the UES. Fix an orientation-reversing loop of $\pi_1(M)$. Let $C_n^{\pm}(\tilde{M}) := 26 C_n(\tilde{M}) / 25 : \pm 0^2$. Note: $C_n^{\pm}(\tilde{M})$ is spenned by a basis 5 ± 3^26 , for $6 \in C_n(\tilde{M})$. We have an SES $O \rightarrow C_n^{\pm}(\tilde{M}) \rightarrow C_n(\tilde{M}) \stackrel{\Delta}{\rightarrow} C_n^{\pm}(\tilde{M}) \rightarrow O$, $\Delta(G) = 6 - 36$. Note also that $C_n(\tilde{M}) \rightarrow C_n(\tilde{M}) \otimes \pi_{0}m_{\tilde{L}}^{2}$ has $\ker = C_n^{\pm}(\tilde{M})$. So $, C_n(\tilde{M}) \otimes \pi_{0}m_{\tilde{L}}^{2} \stackrel{\simeq}{=} C_n^{(\tilde{M})}/C_n^{\pm}(\tilde{M}) = C_n^{\pm}(\tilde{M})$.