(f) K(6,1) Spaces 1) Defin:

to a loop representing the same element of TTI(Y, yo), so for can be homotoped to fie.

2-skeleton & beyond:

Suppose we've conditicted homotopy
$$X^{n-1} \times I \cup X \times \{0, 1\} \rightarrow Y$$
.
Want to extend homotopy to $e^n \times I$, where e^n
is an n-cell of X. Note that $e^n \times I$ is an
 $(n+i)$ -cell of $X \times I$. This is attached to
 $X^{n-1} \times I \cup X \times \{0, 1\}$ via a map S^n , $n \ge 2$.
As in the proof of surjectivity, we can lift
As in the proof of surjectivity, we can lift
 $S^n \rightarrow X \rightarrow Y$ to $S^n \rightarrow Y$, and we this to extend
our map to $e^n \times I \rightarrow Y$.

 $\frac{\text{kemork}:}{\text{both halves of this proof that involved extending a map into Y from a 2-skeleton (or higher) to a 3-skeleton (or higher) really proved a general fact: If X is a CW-complex, then any map <math>f: X^2 \rightarrow BG$ can be extended to $X \rightarrow BG$. This wakes sense because maps into BG are entirely coded on the level of TT, 's, and TT, 's are entirely captured by 2-skeletons.