The Problem: Given on acute angled triangle $A B C$.

Pick points $x, 4, z$ on sides $B C, C A, A B$ respectively. When is the perimeter of $\triangle X Y Z$ minimised?

It turns out that the perimeter is minimised when $\Delta x \neq Z$ is the orthic triangle.

In this talk we shell explore the wonderful world of reflections to uncover an unexpected solution to this problem, which will lead us to explore an idea recurring in studying billiard trajectories.
\rightarrow Reflections

A reflection can thus be seen as a "continuation of the pink line" inside the mirror
(Remember the "light takes the least distance path" from physics?)
\rightarrow foray into Euclidean Isometries

- Reflections $\}$ "orientation-reversing"
- Translations $\}$ "orientation - preserving"

2 Orientation preserving \leadsto orientation -preserving
2 Orientation reversing \leadsto rientation-preserving

- Reflection about line $l: R_{l}$

$R_{m} \cdot R_{l}=$ Rotation about P
- Composition of an odd no. of reflections (with some additional condition) \leadsto Reflection + Translation

Building up to the solution:
Restated problem: Given 3 lines l, m, n, no 2 parallel, find points x, y, z on l, m, n resp so that perimeter of $\Delta x Y Z$ minimised.

Warm - Up 1
Given a line l and 2 points $x, 4$ on one side of it. find (the unique) point $z \in l$ so that perimeter $\Delta x \cup z$ is minimised.

Solution: The length $x y$ is fixed, so we really just need to minimise $x z+4 z$.
Reflect Y about l - let the reflection be Y^{\prime}.
The point where $x y^{\prime}$ and l intersect does the job.
Nate that $x z+y z=x z+y^{\prime} z=x y^{\prime}$.
If we pick any other point z^{\prime} on l, then $x z^{\prime}+y z^{\prime}=x z^{\prime}+y^{\prime} z^{\prime}$ gives a "broken line" joining x and y^{\prime}. So we need to use $x y^{\prime} \cap l$.
$W_{\text {arm }}-U_{p} 2$
Given 2 lines l, m and a point x not on either line, find $4 \in l$ and $z \in \mathrm{~m}$ so the the perimeter $\Delta x Y z$ is minimised.

Solution: By Warm $-U_{p} 1$, if we had a second point 4 , we'd know the wed get z by reflecting $X_{m} X$ about m to get X_{m}, and joining $X_{m} Y$. In this case our perimeter would be equal to $x y+x_{m} y$.
So we need to find Y on l so that $x Y+x_{m} Y$ is minimised.
But this is the same ae solving Warm-Up 1 - we here a line l and 2 points x, x_{m} on one side of it. So we know we should reflect x about l to get X_{l}, and join $x_{m} x_{l}$. Its intersection with l will give 4 . So, our final solution is:

Reflect x bout l and m-let these reflections be X_{l} and X_{m}. Join $X_{l} X_{m}$ - the points at which it intersects l, m are our desired y and z.

As before, in this case the perimeter of $x 4 Z$ can be visualised as the length of the segment $X_{l} X_{m}$.
And if we make any other choice y^{\prime}, z^{\prime}, then the perimeter $x y^{\prime} z^{\prime}$ gives a "broken line" joining X_{l} and X_{m}.

Warm-Up 3 - Our Problem!
Given 3 lines l, m, n so that no 2 are parallel, find $x, 4, z$ on l, m, n reap. so that perimeter $x y z$ is minimised. (Note how this restates our original problem).

Solution: Let $R_{l}(P)$ denote reflection of P about live l.
By Warm-up 2 , if we had a point $X \in l$, we'd know whet to do reflect x bout m, n, and join the points $R_{m}(X)$ and $R_{n}(X)$.
The length of this segment would give us our perimeter.
So we reed to find $x \in l$ so that $R_{m}(x) R_{n}(x)$ is minimised. Note that x_{m}, x_{n} always lie on $R_{m}(l), R_{n}(l)$
Altunatively, let $R_{m}(x)=x_{m}$. Then $R_{n}(x)$
$=\operatorname{Rn}\left(\operatorname{Rn}\left(X_{m}\right)\right)$. So we want to find X_{m} on the reflected line $R_{m}(l)$

-
x_{n}

$$
R_{m}(l)
$$ so that $X_{m} R_{n} \circ R_{m}\left(X_{m}\right)$ is minimised.

We know that $R_{n} \circ R_{m}$ is a rotation about $m \cap n=A(s a y)$ about a
fixed angle.
The closer a point is to the center of rotation, the closer it is to ito image under the rotation.

So we need X_{m} to be as close to
A as passible - so we should drop a perpendicular from A to $R_{m}(l)$ to get x_{m} This amounts to dropping a perpendicular from A to l to get X.

Now we can proceed as before. Turns out the points $4, Z$ at which $X_{m} X_{n}$ meets m, n resp. are also the pot of corresponding perpendiculars.

So there we have it! A way to get to this unexpected solution. Let's now see an alternative picture of how this puzzle is working, which will lead us to a recurring idea in billiards, as well as a way to generalise this problem to odd-sided polygons in general.
\rightarrow The Orthic Triangle
The Orthic triangle (ie. the triangle formed by the feet of the three perpendiculars in a triangle) satisfies a cool angle property, as demonstrated in the triangle below:

We can interpret this as - if you bounce a ray of light along one of the orange lines, it keeps circulating in this same orbit.

If we reflect/"unfold" $\triangle A B C$ about one of its edges, as below,

the orange orthic triangle "unfolds" in a straight line, as highlighted in red above.
If we keep doing this, we get something like:

(Picture Credits: Coxeter \& Greitzer, "Geometry Revisited")
Here wive successively reflected the triangle 6 times about each of its sides in turn - it is a fact that the rightmost side $A B$ will always be a translation of the original side $A B$. We see in the picture that the orange orthic triangle unfolds to a straight line joining the two parallel edges $A B$,
whereas any other triangle would unfold to give a "broken line", as shown below in blue:

\rightarrow This idea of reflecting or "unfolding" a surface is often used to study billiard trajectories.

As a final observation, let's see how to generalise this problem of finding a minimal perimeter inscribed polygon, to any odd -sided $(2 n+1)$-gown, instead of just 3 -goons:

Note the picture we get if we perform 3 instead of 6 reflections:

We've performed 3 reflections, so we know triangle II (above) is obtained from I by a reflection translation.
The dark orange line gives this axis of reflection.
Turns out that the axis of reflection gives us the inscribed triangle of minimal perimeter (which coincides with the orthic triangle here).

We can use this idea of the axis of reflection to generalise our problem to $(2 n+1)$-goons, as shown below:

Obtained from blue 5-gon via a reflection translation

Picture Credits: Morley, "Inversive Geometry"
Here, we here a 5-gon (in blue), and hare reflected it about each of its sides in succession. The end result is a 5 -goo obtained via a reflection + translation from the original.
The line in orange marks the axis of this reflection, and tracing it gives us the inscribed 5 -gov of minimal perimeter.

