Configurations, Graphs and Trees
"The Homology of the Little Disks Operad" - Lev Sinh
Goal: To understand confu $\left(\mathbb{R}^{2}\right)$, specifically its H_{x} and H^{*}.

$$
\operatorname{Confn}\left(\mathbb{R}^{2}\right):=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{R}^{2}, x_{i} \neq x_{j}\right\}
$$

A point in $\mathrm{Conf}_{3} \mathbb{R}^{2}$
Why Study this? (A biased answer)
Helps understand:

- Braid Group (Co)homology
- Homological / Representation Stability
- $H_{k}\left(\operatorname{con} f_{n} \mathbb{R}^{d}\right)$

Today weill four on concrete combinatorial descriptions of H_{*} and H^{*}.
(1) $H_{*}\left(\operatorname{con} f_{n}\left(\mathbb{R}^{2}\right)\right)$ and Trees

A point in $\mathrm{Conf}_{3} \mathbb{R}^{2}$

- $H_{1}\left(\operatorname{Con} f_{n}\left(\mathbb{R}^{2}\right)\right) \leadsto$ "1-dim structure" view loops ar "particle dances"

Eg:

View this as a mep

$$
S^{1} \longrightarrow \operatorname{confn} \mathbb{R}^{2}
$$

So get induced map

$$
\underset{\substack{\text { sin } \\ 2}}{H_{1}\left(S^{\prime}\right)} \rightarrow H_{1}\left(\text { confu } \mathbb{R}^{2}\right)
$$

We can we this strategy to study higher-degree H_{k}.

- $H_{2}\left(\operatorname{Con} f_{n} \mathbb{R}^{2}\right) \leadsto " 2$-dim structure"

We can construct maps

$$
s^{\prime} \times s^{\prime} \rightarrow \operatorname{con} f_{n} \mathbb{R}^{2}
$$

And look at the (images of) induced map

$$
\begin{aligned}
& H_{2}\left(S^{\prime} \times S^{\prime}\right) \rightarrow H_{2}\left(\operatorname{confn} \mathbb{R}^{2}\right) \\
& 2
\end{aligned}
$$

Eg:

$$
1
$$

Eg:

- $H_{3}\left(\right.$ Conf $\left.\mathbb{R}^{2}\right)$

$$
s^{\prime} \times s^{\prime} \times s^{\prime} \longrightarrow \operatorname{con} f_{n} \mathbb{R}^{2}
$$

Eg:

Eq:

So we're constructing homology classes via "orbiting planet systems". We can represent these orbiting systems using trees:

- intemal vertices \leadsto \# internal vertices ITI gives the homology degree
- root vertex
- leaves \leadsto \# leans gives the no. of particles.

So given a (labelled) forest, we have an associated homology class.
Note: We hare so far only described some homology gp. elements. We can get others by, for eg, taking linear combinations of them.

- Turns out, the above described classes generate all the homology. But they hare some relations between them, ie. they are not a basis.
Eg:

(II) Cohomology \& Graphs

How do we start thinking about H^{*} ?
Just for the purposes of this tall e, $H^{k}(X) \cong \operatorname{Hom}\left(H_{k}(X), 2\right.$)
(In general, we always have a natural surjection $H^{k} \rightarrow \operatorname{Hom}\left(H_{k}\right.$, 2), which is an is θ if, for eg, all H_{k} 's are torsion-free)

So for eg. $H^{\prime}\left(s^{\prime}\right) \cong \operatorname{Hom}\left(H_{1}\left(s^{\prime}\right), 2\right) \cong 2$
To study $H^{\prime}\left(\operatorname{con} f_{n} \mathbb{R}^{2}\right)$, weill construct maps

$$
\operatorname{con} f_{u} \mathbb{R}^{2} \rightarrow S^{1}
$$

to get induced

$$
\begin{aligned}
& H_{\substack{\prime \\
\text { sil } \\
2}}=H^{\prime}\left(\operatorname{con} f_{n} \mathbb{R}^{2}\right) \\
&
\end{aligned}
$$

- $\omega \in H^{\prime}\left(s^{\prime}\right)$

s^{\prime}
γ : generates $H_{1}\left(S^{\prime}\right)$
Here $\omega \in H^{\prime}\left(s^{\prime}\right)$ sending $\nu \mapsto 1$

Analogous cohomology class in $H^{\prime}\left(\operatorname{Confu} \mathbb{R}^{2}\right)$:

$$
\alpha_{i j} \in H^{\prime}\left(\operatorname{Con} f_{n} \mathbb{R}^{2}\right)
$$

$\alpha_{i j}$ "extracts the motion of i wot j "

$$
\begin{aligned}
& \alpha_{i j}\left(Y^{j}\right)=1 \\
& \because_{i}^{i} j_{k}^{j} \quad \alpha_{i j}\left(Y^{i} \cdot j\right)=0
\end{aligned}
$$

Rigorously, we have a map

$$
\begin{aligned}
a_{i j}: \operatorname{con} f_{n} \mathbb{R}^{2} & \rightarrow s^{1} \\
\left(x_{1}, \ldots, x_{n}\right) & \mapsto \frac{x_{i}-x_{j}}{\left|x_{i}-x_{j}\right|}
\end{aligned}
$$

ω : Generator of

$$
\alpha_{i j}:=a_{i j}{ }^{*}(\omega)
$$

Represent $\alpha_{i j}$ by a (directed) graph
So,

- we've described some elements of $H^{\prime}\left(\operatorname{con} f_{n} \mathbb{R}^{n}\right)$
- tums out, they also generate H^{\prime}
- we understand their action on H_{1}, as $H_{1} \longrightarrow 2$
\rightarrow What about higher He?
Using the cohomology up product, we can get some higher-degree cohomology classes. Weill represent these as graphs too.

Eg: $\quad \alpha_{12} \alpha_{13} \in H^{2}$

$$
\alpha_{34} \alpha_{12} \alpha_{13} \in H^{3}
$$

\rightarrow Implicit in these graphs is an ordering σ of the edges, to record the order of multiplication of the $\alpha_{i j}$'s.

Note: \#edges $|E(G)| \leadsto$ degree of cohomology $|E(G)|$
\rightarrow But how can we understand these graphs as Mom (Mk, 2)?
(III) Graph-Tree Paining

So far, we have a way of associating cohomology classes to directed labelled graphs (with an ordering on edges)
To understand how they act on H_{k}, we need to unpack how the cup product work.
But it turns out, there is a combinatorial rule that captures this.
This should, for eg, give us: $\left\langle, \lambda_{1}^{2}, Y^{2}\right\rangle=1$

$$
\left\langle, \lambda_{2}, Y_{0}^{3}\right\rangle=0
$$

Here's how we define the general paining $\langle G, T\rangle$:
(1) If there's an edge $i \rightarrow j$ in G set. there is no path b/w i\& j in T, then $\langle G, T\rangle=0$

Eg: $\left\langle i \rightarrow i_{2}, Y^{2}\right\rangle=0$
(2) Otherwise, define
$\beta_{a, T}:\{$ edges of $G\} \rightarrow\{$ internal vertices of $T\}$
$i \cdot \lambda^{0 j} \mapsto \quad$ lowest vertex of path from i to j.

Eg:

$$
\begin{aligned}
&\langle G, T\rangle=\left\{\begin{array}{l}
0 \\
\text { if } \beta G, T \\
\pm 1 \\
\uparrow \\
\uparrow
\end{array} \omega\right. \\
& \text { depends }
\end{aligned}
$$

Aside (Not for the Talk): Why the rule works

Eg:

$$
\alpha_{12} \alpha_{23}=X_{3}^{2}
$$

Recall: ' ${ }^{3}$, ${ }^{2}$ is obtained from the image of the map

Give a Δ-complex structure to $S^{\prime} \times S^{\prime}$:

Then

$$
\left.\begin{array}{rl}
\alpha_{12} \alpha_{23}\left(V^{3}\right) & =\alpha_{12} \alpha_{23}\left(F\left[v_{0} u_{1} v_{2}\right]\right.
\end{array}+F\left[v_{0} v_{1} v_{2}\right]\right)
$$

On the other hand, for $\alpha_{12} \alpha_{23}\left(Y^{2}\right)^{3}$, the analogous computation yields:

$$
\begin{aligned}
\alpha_{12} \alpha_{23}\left(V^{3}\right) & =\alpha_{12} \alpha_{23}\left(F\left[v_{0} u_{1} v_{2}\right]+F\left[v_{0} v_{1} v_{2}\right]\right) \\
& =\underbrace{\alpha_{12}\left(F\left[v_{0} u_{1}\right]\right)}_{1}) \underbrace{}_{23}\left(F\left[u_{1} u_{2}\right]\right)
\end{aligned} \underbrace{\alpha_{12}\left(F\left[v_{0} v_{1}\right]\right)}_{1} \underbrace{}_{23}\left(F\left[v_{1} v_{2}\right]\right)=1
$$

where

In general, we can give $\left(S^{\prime}\right)^{k}$ a Δ-complex structure by partitioning $[0,1]^{k}$ into $k!k$-simplices of the form $\left[v_{0} v_{1} \ldots v_{k}\right]$, where each $v_{i} v_{i+1}$ is an edge of $[0,1]^{k}$.

Thus for $\omega \in H^{k}, h \in H_{k}, \omega(h)$ is a sum of terms of the form $\quad \alpha_{i_{0} i_{1}}\left(\left[v_{0}, v_{1}\right]\right) \alpha_{i_{1} i_{2}}\left(\left[v_{1}, v_{2}\right]\right) \ldots \alpha_{i_{k-1}} i_{k}\left(\left[v_{k-1} v_{k}\right]\right)$.

The image of each edge $\left[v_{j} v_{j+1}\right]$ is a single S^{\prime} - orbit in the homology class. Note that orbits correspond to internal vertices of the associated tree

Thus, a given term is ± 1 iff $\left[v_{j} v_{j+1}\right]$ maps to an orbit s.t. particles i_{j} and i_{j+1} are on different components of that orbit.

This can happen iff the pairs $\left(i_{j}, i_{j+1}\right)$ - which correspond to the edges of the graph G - can be put in bijection with the orbits - corresponding to internal vertices of T - $s \cdot t$ each pair i_{j}, i_{j+1} is on different components of the associated orbit. This is exactly what the combinatorial rule said.

All other terms will be forced to be 0 , and thus $\omega(h) \neq 0$ iff a bijection of the above form exists.

