In eq: for Mg-HA, if a bage in M life to a large in M, then it ado its
the density on the Rife. 24 its dependence in the large consection-
reacting), it and the main in the large consection.
The G THE G THE THE ADDITION IN THE Large consection.
We have of gree E-X
$$\longrightarrow$$
 Th(X) ~ G is a automorphismes,
We have of gree E-X \longrightarrow Th(X) ~ G is a automorphismes,
We have of This on G, can combined a buildle by
quaterating XXGI (X: unive course) by the diagonal action of Th
quaterating XXGI (X: unive course) by the diagonal action of This main
(in guarant, can control course of Histor F via XXF/Th(X) in this may)
• Given a buildle E \rightarrow X, the action of Th(X, z=) on p²(Z=) it
"the sense as" the action of Th(X, T) on p²(Z_1), ite:
Take a path V from Z to Z. Can think of Th(X, Z) as
 $VTh(X, Z) V'.$
Then V induces an two p²(Z_2) + f(X) equivariant under Th eaching,
ife for each he Th(X, x_0),
 $Y = h = (q_1 Y_1) Y$ (see a map $p^2(Z_0) - p^2(X_1)$)
 $eTh(X, z) O'.$
(ife V induces a Thix - equivariant iso the the Aloree Th(X, z=)
and Th(X, z, z))
End(X Above first autoromorphisme G \rightarrow G.
(ife V induces a Thix - equivariant iso the the Aloree Th(X, z=)
 $eTh(X, z, z) = equivariant autoromorphisme G \rightarrow G.
(ife V induces a Thix - equivariant iso the the Aloree Th(X, z=)
 $eTh(X, z, z) = equivariant autoromorphisme G \rightarrow G.
(ife Q induces a through the server X correspond to
 $Th(X) - equivariant autoromorphisme G \rightarrow G.
(iffor the second for the theorem Y have in the fibre G
 $E \xrightarrow{F} E' = E' = E' + F'$ is a group ite on
 $\times \xrightarrow{F} X'$ every fibre
G2 fullback bundles : Given $\times \xrightarrow{F} X'$, conduct publick ff(E) \rightarrow X.
As a set, $f^{2}(E') = \frac{2}{2}(z,e') : x \in X, e' \in F'(RX) 28$$$$

(i.e. using the fibre over
$$f(x)$$
 to conduct
the fibre over x .)
Use local invalisations over $f''(U') \subset X$.
We have a natural bundle map
 $f^{\dagger}E' \stackrel{\frown}{\longrightarrow} E'$
 $\downarrow \qquad \downarrow$
 $X \stackrel{\frown}{\longrightarrow} X'$

Gove a bundle map
 $E \stackrel{\frown}{\longrightarrow} E'$
 $p \downarrow \qquad \downarrow p'$
 $X \stackrel{\frown}{\longrightarrow} X'$

the map $E \rightarrow F^{\dagger}E'$ sending $e \mapsto (P(e), F(e))$ is
On iso of bundle.
Thus pullbacks give all bundle maps
 $G \stackrel{\frown}{\longrightarrow} E'$
 $p \downarrow \qquad \downarrow p'$
 $X \stackrel{\frown}{\longrightarrow} X'$

the map $E \rightarrow F^{\dagger}E'$ sending $e \mapsto (P(e), F(e))$ is
On iso of bundle.
Thus pullbacks give all bundle maps
 $G \stackrel{\frown}{\longrightarrow} E'$
 $f \stackrel{\frown}{\longrightarrow} C'$
 $f \stackrel{\frown}{\longrightarrow} C'$

Now suppose two maps
$$f_0, f_1 : X \longrightarrow X'$$
 are homotopic.
Then they induce the same qp home on T_i 's, and
thus $f_0^*E' = f_i^*E'$.

3' is the path from $f_0(x) = y_0$ to $f_1(x) = y_1$ based out by the homotopy. Then the lifte 3' from the fibre over y_0 to the fibre over y_1 give the bundle isomorphism.

The statement: B(X;G) := bundles of gps over X w/ fibre G, upto isomorphism $E_o <math>\rightarrow BhutG := bundle w/ fibre G corresponding to the natural action of Aut G <math>\neg G$. $E_X, Y] := homotopy classes of maps <math>f : X \rightarrow Y$.

Then the map

$$\begin{bmatrix} X, & BAUGG & O \\ f & \longmapsto & f^* E_0 \end{bmatrix}$$

is a bijection.

Proof:

Surjectivity: given a bundle in B(X,G), it corresponds to a hom. $\Pi_i(X, X_O) \rightarrow het G$. Can contract a map $f: X \rightarrow BhetG$ that achieves this homomorphism on $\Pi_i's$, and then by tracing the construction of f^*E_0 , can show that f^*E_0 is the desired bundle. Injectivity: Suppose $f_i^*(E_0) \stackrel{c}{=} f_2^*(E_0)$. Pick $x \in X$, let $y_i = f_i(x_0)$, $y_i = f_2(x_0)$. Assume for now that $y_i = y_i = y_0$. $f_i^*(E_0) = f_i^*(E_0)$ means that both bundles correspond to isomorphic actions of $T_i(x_i, x_0)$ on G. i.e. \exists an automorphism $\rho \in Aut G$ i.t. for every $Y \in T_i(x_i, x_0)$. $P \circ [f_i]_k(Y) = (f_i]_k(Y) \circ \rho$. Thus $(f_i)_k(Y) = P([f_i]_k \otimes) \rho'$ if $Y \in T_i(X_i, x_0)$. Now we construct the homotopy. First conduct on X'. Contract a merimal tree T of X' to get wedge of circles. $f_i = \frac{f_i}{2x_0}$ from the tree for f_i to the one under f_i by moving the formation f_i .

Now homotope the wedge under f_i to the one under f_z by moving the centre of the wedge along a loop corresponding to $f \in A_i + G_i$ (this is where we use $p \circ (f_i)_* \times o p^{-i} : (f_z)_* \times)$

$$\mathscr{H}^{i} \to \mathscr{H}^{i} \to \mathscr{H}^{i} \to \mathscr{H}^{i} \to \mathscr{H}^{i} \to \mathscr{H}^{i}$$

To extend homotopy from X'XI to XXI, proceed inductively. Suppose here homotopy on Xⁿ'XI, n≥2. This is the n-sheleton of XXI. Take an (n+1)-cell e^{nt1}, attached by its bodry denti = Sn. Since Sn simply connected, can lift attaching map to Sⁿ = EArth, and since EArth contractible, this allows us to extend to entil → EArth, and thus to entil → EArth G.

Now to deal with the general y; # y2 care, note that we can always homotope fi to a map sending x0 H y2: Homotope on X'/T by ringly alongating the wedge along a peth from y; to y2, then extend to XXI by the serve method described above

$$\frac{kemork}{kemork}: The last part of the proof didn't use anything special about this problem's context, and really proved a general fact:
If X is a CW-complex, then any map $f: X^2 \rightarrow BG$
can be extended to $X \rightarrow BG$.
This makes sense because maps into BG are entirely coded
on the lasel of TT, 's, and TT, 's are entirely captured by
2-sheletons.$$

kelated useful fact:
$$[X, Y] := homotopy classes of maps $X \rightarrow Y$
 $< X, Y > := base pt-preserving homotopy classes of mapsWhen X, Y are path-connected, $[X, Y] = < X, Y > / Tr_i(Y)$$$$