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Goal of the Talk Dualitystatement SteinbergModules

Applications

Boredserve background on symmetric space



Dualitystatement The Steinberg Module

The H Sink Q Hq i Sina QQStnQ
Steinberg
Module

The TitsBuilding In Q

Vertices DEV Q proper nonzero subspaces
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Eg n 2 EQ is a 0 dim complex with a vertexfor every
line L C Q
suppose Q 404 apartment

Ef syppfs.isiipeifhg
fame Then the following

ᵗ

l 404 apartment

1

In general for a frame Q
L In we get an apartment

in 2nA which is iso to the barycentrically
subdivided boundaryof an

Cn17 simplex
Thus an apartment is 5 2 and gives an element in Hn212nA

called an apartmentclass
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Rick Sink As In so stn QQ is a Sink module

We can similarly define 2nF and stuff foranyfield77
When R is a number ring and IF its field of fractions
we have an analogous duality result for Sink in terms

of Stnlf

Computing H SLn2 Q
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can use partial resolutions for H in lowdegrees
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However the same trick doesn't workwith
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Def An apartment class is integral if it arises from a frame
of 2h

Theme Stink is generated by integralapartmentclasses
and this allows us to prove H Sla2 Q E Stn sn 0
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One way to
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To surject onto StuG we thus need to fill in the dimn 2

holes in EnQ

One Idea Try attaching n 11 cells whose boundaries attach
to these holes andhope we can compute SLD
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Then to further build on the resolution will want
to tack on n dimcells and so on

Exactness of resolution vanishing Hx of augmentedcomplex

which is implied by highconnectivity
There are various combinatorialtopologytools

to prove

high connectivity of simplicial complexes

n 2 It
St HoZ2Q To QU 903
Firstaugmentation edges bw vertices

forming integral
basis IiFareyGraph

secondaugmentation fill in the triangles
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Thm Bieri Eckmann A group G of typeFP is a rationalduality

group iff HCG 091 0 it k

Fact If x ̅ is contractible and x ̅ a spot and x ̅ x ̅G is a cover
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Problems Xn She is not compact
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But if we add all the corner pts we'll
compactify to x ̅ without changing its homotopy
type
Note Corners QU as lines in Q vertices in

EQ

The BoredSerre There exists a compactification Xn C In s t

Xn xn̅ is a homotopy equivalence Sink A Xn extends to x ̅
In T is compact
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Oxn̅ In Tits building
is a simplicialcomplex v5 2

Thus we now have

Hican
anyp

Hci x ̅ TEETER i xn̅ din a

a _i oxn̅ Q

x ̅ It i Ena

since Eno V5 2 Hx is concentrated in deg cgfdgtegbeli.cn
i e precisely when

I i 2 n 2

1i CI
Conclusion Hi SLE Q Hy i SLE finalena Q

E Hq i 1542 s.IEfModule


