

- · SINE is a "rational duality group", which we can use to study H* close to the red.
- . We have an analogous picture for SLnk for number rings k, Spank, etc. (quadratic vcd, stable H*, duality).

Conjecture (Church - Farb-lutman): $H^{(2)-i}(SL_n 2; \mathbb{Q}) \cong O$ for $i \leq n-2$

Suppose
$$\mathbb{Q}^2 = L_1 \oplus L_2$$
 . Ly "apartment"

every

Eq: suppose
$$\mathbb{R}^3 = L_1 \oplus L_2 \oplus L_3$$
 is a frame. Then the following is a subcomplex of $\mathbb{C}_3\mathbb{Q}$:

In general, for a frame $\mathbb{Q}^n = L_1 \oplus L_2 \oplus \ldots \oplus L_n$, we get an apartment in $\mathbb{Z}_n \mathbb{Q}$, which is iso to the barycentrically subdivided boundary of an (n-1)-simplex. Thus an apartment is $\cong S^{n-2}$, and gives an element in $H_{n-2}(\mathbb{Z}_n \mathbb{Q})$, called an "apartment class"

Thm: [Solomon-Tits]
$$Z_n \mathbb{R} \simeq V S^{n/2}$$

 $St_n(\mathbb{R} := \widetilde{H}_{n-2}(Z_n \mathbb{R}; 2)$ is generated by
apartment classes.
(but NOT a basis)

• We can similarly define ZnIF and StriF for any field IF. When k is a number ring and IF its field of fractions, we have an analogous duality result for Slnk in terms of StriF.

so, in
$$(St_2)_{SL_22}$$
, $[M] = -[M]$
: $[M] = 0$

However the same trick doesn't work with Q[0] - Q[2]<u>Problem</u>: Q[0] - Q[1] is an "integral apt class", Q[0] - Q[2] is not

But notice :

holes"

ThQ.

$$\mathbb{Q}\left[\begin{smallmatrix} 0 \\ 0 \end{bmatrix} - \mathbb{Q}\left[\begin{smallmatrix} 2 \\ 3 \end{bmatrix}\right] = \left(\mathbb{Q}\left[\begin{smallmatrix} 0 \\ 0 \end{bmatrix}\right] - \mathbb{Q}\left[\begin{smallmatrix} 1 \\ 0 \end{bmatrix}\right) + \left(\mathbb{Q}\left[\begin{smallmatrix} 1 \\ 0 \end{bmatrix}\right] - \mathbb{Q}\left[\begin{smallmatrix} 2 \\ 3 \end{bmatrix}\right]$$
integral apartment

- Defn: An apartment class is integral if it arrises from a frame of 2ⁿ.
- Thm: StnQ is generated by integral apartment classes (and this allows us to prove $H^{(i)}(Sl_{1}2; Q) \cong (Sl_{1}Q)_{Sl_{1}Q} = 0$)
- Rmk: This is not true for StriF for all number fields IF.

Eq:
$$n=2$$
.
St_2 = $\tilde{H}_0(\mathbb{Z}_2\mathbb{R}) = \tilde{H}_0(\mathbb{Q} \cup \mathbb{Q} \otimes \mathbb{Z})$
First auguentation : edgee blu verties
from y "integral
basis"
 $- Farey Graph_0^{<} = [-1]$
Second auguentation : full in the triangles [1]

Thm [Bieri - Eckmann]: A group G (of type FP) is a rational duality
group iff
$$H^{i}(G; QG) = O + i \neq k$$

<u>Fact</u>: If \tilde{X} is contractible and \tilde{X}/G epct (and $\tilde{X} \rightarrow \tilde{X}/G$ is a cover), then $H^{i}(G; \mathcal{Q}G) \cong H^{i}_{c}(\tilde{X}; \mathcal{Q})$

Defn: Symmetric Space

$$Sln 2 \sim Sln iR/son) = Xn$$
 "symmetric space"
 $g \cdot A = gAg^T$
dim $Xn = \frac{\binom{n+1}{2} - 1}{1}$
 $\cdot Xn$ is contractible
 \cdot Action not free . Finite stabilisers (not a problem for Q-coeffs)
Roblem: $Xn/Sln 2$ is not compact

Eq: When
$$n=2$$
,
 $SL_2Z \sim SL_2R/SO_2 \cong H^2$
 $SL_2R \sim H^2$ by fractional linear maps
 -2 -1 0 1 2
 $X_2/SL_22:$ not compact

But if we add all the "corner" pts, we'll
compactify
$$X_2$$
 to \overline{X}_2 without changing its homotopy
type.
(Note: corners $\leftrightarrow \mathbb{R} \cup 2003 \leftrightarrow$ lines in $\mathbb{Q}^2 \leftrightarrow$ vertices in
 $\overline{\zeta}(\mathbb{Q})$

Thm [borel-Serre] There exists a compactification $X_n \subset \overline{X}_n$ s.t.:

- · Xn m is a homotopy equivalence, Shi 2 ~ Xn extends to Xn.
- \overline{X}_n/Γ is compact • \overline{X}_n is a topological (not smooth) manifold of dim = $\binom{n+1}{2} - 1$

•
$$\partial \overline{X}_n \simeq \overline{C}_n \mathbb{Q}$$
 "Tits building"
- is a simplicial complex, $\simeq VS^{n-2}$

Thus, we now have:

$$H^{i}(\mathfrak{A}_{n} \mathfrak{Z}; \mathfrak{R}[\mathfrak{A}_{n} \mathfrak{Z}]) = H^{i}_{c}(\overline{X}_{n}; \mathfrak{Q}) \stackrel{\text{for } \overline{X}_{n}}{=} H^{i}_{\mathfrak{R}_{2}}(\overline{X}_{n}; \mathfrak{Q}) \stackrel{\text{for } \overline{X}_{n}}{=} H^{i}_{\mathfrak{R}_{2}}(\overline{X}_{n}; \mathfrak{Q})$$

$$\stackrel{\text{Les } \mathfrak{q} pairs}{\overline{X}_{n} \mathfrak{Z} \mathfrak{l} \mathfrak{r}^{\mathfrak{s}}} \stackrel{\text{H}}{=} H^{i}_{\mathfrak{R}_{2}}(\overline{X}_{n}; \mathfrak{Q})$$

$$\stackrel{\text{Les } \mathfrak{q} pairs}{=} H^{i}_{\mathfrak{R}_{2}}(-i-2(\partial \overline{X}_{n}; \mathfrak{Q}))$$

$$\frac{\partial \overline{X}_{n} \simeq \mathcal{I}_{n} \mathfrak{R}}{=} H^{i}_{\mathfrak{R}_{2}}(-i-2(\mathcal{I}_{n} \mathfrak{Q}; \mathfrak{Q}))$$

Since $T_n \mathbb{R} \simeq V S^{n-2}$, $H_{\mathbb{R}}$ is concentrated in deg n-2 (and is free abelian for deg n-2) i.e., precisely when:

$$\binom{n+1}{2} - i - 2 = n - 2$$

$$\iff i = \binom{n}{2}$$

 $\begin{array}{rcl} \underline{Conclusion}: & H^{i}(Sl_{n}2; \mathbb{R}) \cong H_{\binom{n}{2}-i}(Sl_{n}2; \widetilde{H}_{n-2}(T_{n}\mathbb{Q}; \mathbb{Q})) \\ & \cong H_{\binom{n}{2}-i}(Sl_{n}2; \underbrace{St_{n}\otimes\mathbb{R}}) \\ & \underbrace{Steinberg}_{Module} \end{array}$