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In this expository paper we describe the cohomology ring of the complex Grassmannian,
by establishing it as a quotient of the ring of symmetric polynomials. We do this by giving
the Grassmannian a cell structure, and then using the duality of cup product with transver-
sal intersections of cells, which can in turn be understood through linear algebra arguments.

This isomorphism allows us to borrow combinatorial tools, such as the Littlewood-Richardson
rule, for multiplying symmetric polynomials to find the cup products of cohomology classes.
This in turn helps to study transversal intersections of linear subspaces using duality, and
so can be used to answer problems in enumerative geometry - although this application is
not explored in this paper.

1. Definitions and Notation

We start with setting up notation.

Definition. The Complex Grassmannian Grr(Cm) is the set of r-dimensional complex
linear subspaces of Cm. Let n = m− r.

We state without proof the following theorem:

Theorem. Grr(Cm) is a compact closed (i.e. without boundary) complex manifold of (com-
plex) dimension rn.

2. Cell Decomposition of the Grassmannian

Having a CW cell structure on a topological space is often a useful way to compute its
(co)homologies. For Grassmannian manifolds, we have a Schubert cell decomposition .
To define this cell decomposition, we first need the notion of a complete flag.
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Definition. A complete flag is an increasing sequence of linear subspaces

F• = {0} = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fm = Cm

such that dimFi = i.

Definition. For a fixed flag F• and partition λ, define the Schubert cell σλ as follows:

σλ = {V ∈ Grr(Cm)| dim(V ∩ Fn+i−λi) = i, dim(V ∩ Fn+i−1−λi) = i− 1, 1 ≤ i ≤ r}

Remark. (1) For any V ∈ Grr(Cm) and 1 ≤ i ≤ r, there has to be some ji so that
dim(V ∩ Fji) = i. Thus what the definition above is saying is that n + i − λi is the
smallest number ji for which this holds.

(2) Note that n+ i− λi < n+ i+ 1− λi+1 for all i.
(3) Note that the above definition implies that σλ is non-empty if and only if `(λ) ≤ r

and λ1 ≤ n.

Example. Let n = 3, r = 3. Let e1, e2, . . . , e6 be the standard basis of C6, and take the
standard flag given by Fk = 〈e1, e2, . . . , ek〉. Let λ = (3, 1, 1). Note that n + 1 − λ1 =
3 + 1 − 3 = 1, n + 2 − λ2 = 4, n + 3 − λ3 = 5. Take the 3-dimensional subspace V of C6

spanned by e1, e2 + e4, 2e3 + e5. Then V ∈ σλ.

Example. Take n = 7, r = 5. Let e1, e2, . . . , e12 be the standard basis of C12, and choose
the standard flag as before. Let λ = (5, 3, 2, 2, 1). Consider the 5 dimensional subspace V of
C12 spanned by e1 + e2 + e3, e6, e5 + e7 + e8, e9, e7 + e11. Then V ∈ σλ.

Remark. The definition of σλ above does depend on our choice of flag - however, as we
will see later, the (co)homology classes determined by Schubert cells are in fact invariant
under choice of flag. When we need to make a distinction between flags we’ll denote a cell
by σλ(F ). But for now we’ll overlook this issue, and mostly work with the standard flag,
defined in terms of the standard basis of Cm.

Proposition. The σλ give a cell decomposition of Grr(Cm), where λ = (λ1, λ2, . . . , λr) is a
partition with λ1 ≤ n. The complex dimension of σλ is rn− |λ|.

Proof. We’ll show that σλ is completely classified by the reduced row echelon form of its
elements. For brevity, let ki = n+ i− λi.
Suppose V ∈ σλ. Since dim(V ∩ Fk1) = 1, there must be a v1 ∈ V ∩ Fk1 . Furthermore, since
dim(V ∩ Fk1−1) = 0, v1 must have a non-zero coordinate for ek1 . We can normalise this to
1. Thus we can assume that

v1 = (∗, ∗, . . . , ∗︸ ︷︷ ︸
k1−1

, 1, 0, 0, . . . , 0)

is a vector in V .
Similarly, since dim(V ∩ Fk2) = 2, there must be a vector v2 ∈ V ∩ Fk2 , and we can further
arrange for the ek2-coordinate of v2 to be 1. Also, since we already have v1 ∈ V whose
ek1-coordinate is 1, we can subtract an appropriate multiple of v1 from v2 to arrange for the
ek1-coordinate of v2 to be 0. Thus

v2 = (∗, . . . , ∗︸ ︷︷ ︸
k1−1

, 0, ∗, . . . , ∗︸ ︷︷ ︸
k2−k1−1

, 1, 0, 0, . . . , 0)
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is in V . Similarly we can find a vector

v3 = (∗, . . . , ∗︸ ︷︷ ︸
k1−1

, 0, ∗, . . . , ∗︸ ︷︷ ︸
k2−k1−1

, 0, ∗, . . . , ∗︸ ︷︷ ︸
k3−k2−1

, 1, 0, 0, . . . , 0)

in V , and so on.
If we arrange these vectors to form the rows of a matrix, we obtain the row reduced echelon

form associated to V , as follows:
k1−1︷ ︸︸ ︷
∗ · · · ∗ 1

k2−k1−1︷ ︸︸ ︷
0 . . . 0 0

k3−k2−1︷ ︸︸ ︷
0 . . . 0 0 0 0 . . . 0

∗ · · · ∗ 0 ∗ · · · ∗ 1 0 . . . 0 0 0 0 . . . 0
∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · ∗ 1 0 0 . . . 0

...
...

...
...

...
...

...
...

...
...


It’s not hard to see that a linear subspace V is in σλ if and only if its reduced row echelon

form has the form given above. So this shows that σλ is homeomorphic to CN , where N is
the number of ∗ in the matrix above. We can count N as follows:

N = r(k1 − 1) + (r − 1)(k2 − k1 − 1) + (r − 2)(k3 − k2 − 1) + · · ·+ (r − i)(ki+1 − ki − 1) + . . .

= r(n− λ1) + (r − 1)(λ1 − λ2) + (r − 2)(λ2 − λ3) + · · ·+ (r − i)(λi − λi+1) + . . .

= rn− λ1 − λ2 − λ3 − · · · − λi − . . .
= rn− |λ|

Finally, note that given a row reduced echelon matrix, we can recover the corresponding
partition λ. By the uniqueness of row reduced echelon form, it follows that each open cell
σλ(∼= Crn−|λ|) maps homeomorphically onto the Grassmannian. �

Remark. The matrix constructed above is really obtained from a reduced row echelon
matrix after reversing the entries in each row from left to right and each column from top to
bottom, and so is not, strictly speaking, a reduced row echelon matrix itself. However since
we can still use the same existence and uniqueness result for it, we’ll overlook this subtlety
here. (True reduced row echelon matrices will appear later though, when we define ‘reverse
flags’)

We wrap up this section with a description of the closure of a Schubert cell.

Proposition. For a partition λ, the closure of the cell σλ is given as follows:

σλ = {V ∈ Grr(Cm)| dim(V ∩ Fn+i−λi) ≥ i, 1 ≤ i ≤ r}

Proof. Clearly, the left hand side is contained in the right hand side. We can also see that
the right hand side is closed, as follows:

Note that the right hand side is the intersection of Ei = {V ∈ Grr(Cm)| dim(V ∩Fn+i−λi) ≥
i} for a fixed i, as i ranges from 1 to r. Thus it’s enough to show that each of these indi-
vidual sets Ei is closed. Take V ∈ Ei. Write out V as an r ×m matrix by taking a basis
for V and arranging them in the rows of the matrix (by writing each basis element in terms
of the standard basis e1, e2, . . . , em). The linear subspace Fn+i−λi corresponds to the first
n + i − λi columns of the matrix, so the condition that dim(V ∩ Fn+i−λi) ≥ i is equivalent
to requiring that in the reduced row ecehelon form of this matrix, that atleast i rows should
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have all 0’s in their last m − (n + i − λi) = r − i + λi columns. This is equivalent to say-
ing that if we take our original matrix and consider only its last r − i + λi columns, then
this truncated matrix should have rank ≤ r − i − 1. This further translates to saying that
all (r−i)×(r−i) minors of the truncated matrix should vanish. This implies that Ei is closed.

So we now need to show that σλ ⊃ {V | dim(V ∩ Fn+i−λi) ≥ i, 1 ≤ i ≤ r}. For this it is
enough to take a V in the right hand side and find a sequence of elements in σλ that converge
to V .

We know that V ∈ σµ for some unique µ. The condition that dim(V ∩ Fn+i−λi) ≥ i says
that the pivots in the reduced row echelon form of V appear before n + i − λi on the ith
row. i.e, n+ i− µi ≤ n+ i− λi or equivalently, λi ≤ µi for all i. Conversely if V ∈ σµ with
λi ≤ µi for all i then dim(V ∩ Fn+i−λi) ≥ i for all i.
First we’ll show that for a fixed j, if µ satisfies µi = λi for all i 6= j and µj > λj, then
V ∈ σλ. In this case, the jth row of the reduced row echelon form of V looks like:[

t1 t2 . . . tn+j−µj−1 1 0 0 . . . 0 0 . . .
]

Take a sequence {Vk} in σλ as follows: All but the jth row of Vk agree with V , and the
jth row of Vk is given by:[

t1 t2 . . . tn+j−µj−1 1 1
k

1
k

. . . 1
k

0 . . .
]
,

with the last 1
k

appearing in the (n+ j − λj)th position. Since the (n+ j − λj)th entry is
non-zero, Vk is in σλ, and clearly Vk → V as k →∞.
Now for the proof in the general case, we proceed as follows: Given V ∈ σµ, first find a
sequence in σ(λ1,µ2,...,µr) that converges to V using the previous case. Then for each chosen
element in σ(λ1,µ2,...,µr), find a sequence in σ(λ1,λ2,µ3,...,µr) converging to it, and so on. This
will show that σµ ⊂ σ(λ1,µ2,...,µr) ⊂ σ(λ1,λ2,µ3,...,µr) ⊂ · · · ⊂ σλ, and in particular, σµ ⊂ σλ, as
desired. �

3. Poincare Duality and Cup Product

In this short section we state two results from algebraic topology that we will be using to
compute H∗(Grr(Cm)). Throughout this paper we’ll be working with coefficients in Z, so
we may at times omit this from the notation.

Poincare Duality.

Theorem. If M is a compact, closed oriented manifold of (real) dimension n, then there is
a canonical isomorphism

Hk(M ;Z) ∼= Hn−k(M ;Z)

For a homology class [A] ∈ Hn−k(M), we denote its dual class in Hk(M) by [A]∗.

Remark. Since Grr(Cm) is a complex manifold, in particular it is orientable and so Poincare
Duality applies.

Cup Product and Intersection. The next result states that the cup product in the
cohomology ring of M is dual to intersecting homology classes.
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Theorem. If M is a compact closed oriented manifold of dimension n, and A,B are ori-
ented submanifolds of M that intersect transversely, with [A], [B] denoting their respective
homology classes, then

[A]∗ ^ [B]∗ ∼= [A ∩B]∗

4. Cohomology of the Grassmannian

Additive Cohomology Structure. We can use the cell decomposition of Grr(Cm) to
determine the additive structure of H∗(Grr(Cm)), as follows: Since all cells have even (real)
dimension, all the boundary maps in the chain complex so obtained must be zero. This
implies that all the homology groups of Grr(Cm) are free abelian groups - in odd dimensions
the homology is trivial, and in an even dimension 2k we have a free abelian basis formed by
homology classes [σλ], where λ is a partition such that λ1 ≤ n, `(λ) ≤ r, and k = rn− |λ|.
By Poincare duality, knowing the degree-2k homology means we also know the degree-(2rn−
2k) cohomology. The cohomology classes [σλ]

∗ generating the cohomology groups are called
Schubert cycles.
We summarise this in the following theorem:

Theorem. H2k+1(Grr(Cm);Z) = 0 for all k = 0, 1, 2, . . . . For even dimensions, the set of
Schubert cycles [σλ]

∗ such that λ1 ≤ n, `(λ) ≤ r, and |λ| = k, form a basis forH2k(Grr(Cm);Z).

Towards Ring Structure. We are now interested in analysing the multiplicative structure
of the cohomology ring of Grr(Cm). The remainder of this and the next section will be
devoted to proving the following result:

Theorem. As a ring, we have

H∗(Grr(Cm);Z) ∼= Λr/(hm−r+1, hm−r+2, . . . ) = Λr/(hn+1, hn+2, . . . )

where Λr denotes ring of symmetric polynomials in x1, x2, . . . , xr (with integer coefficients),
and the hk denote the homogeneous symmetric functions.
Moreover, this isomorphism is given by sλ 7→ [σλ]

∗, where sλ denotes the Schur polynomial.

In the next subsection we present an outline of a proof this theorem.

Outline of Proof. From now on, we will (severely) abuse notation and use σλ to denote
both the Schubert cell and its corresponding Schubert cycle [σλ]

∗.
Recall Pieri’s rule for symmetric functions:

Theorem.
sλ · s(k) =

∑
λ↑λ′,|λ′|=|λ|+k

sλ′

We will show that Pieri’s rule also holds for the cohomology classes σλ in H∗(Grr(Cm)),
i.e. that

σλ · σ(k) =
∑

λ↑λ′,|λ′|=|λ|+k

σλ′

This will require a fair bit of work, and is postponed to the next section.

Assuming Pieri’s rule holds, we can proceed as follows: Note that hk = sk, and that Λk is
freely generated as a ring in h1, h2, . . . . Thus we can uniquely describe a ring homomorphism
Λk → H∗(Grr(Cm)) that sends hk 7→ σ(k). We can then use Pieri’s rule, that holds in both
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Λk and H∗(Grr(Cm)), to show that this ring map sends sλ 7→ σλ.
This will imply that the ring map is surjective since all generators σλ of H∗(Grr(Cm))
are in the image; Since σ(k) = 0 for k > n and 6= 0 otherwise, and because the Schur
polynomials sλ are linearly independent, it will follow that the kernel of this map is generated
by sn+1, sn+2, . . . (which are the same as (hn+1, hn+2, . . . )), and so the isomorphism will
follow.

Now let’s see why Pieri’s rule implies that sλ 7→ σλ. We already know that s(k) 7→ σ(k), so
we know the result holds when `(λ) = 1. We will induct on the length of λ.

Suppose the result holds for partitions of length l, and we want to show it for length l+ 1.
Take a partition (λ1, λ2, . . . , λl). By Pieri’s rule, we have

sλ · h1 =
∑

(s indexed by partitions with l parts) + s(λ1,λ1,...,λl,1)

A similar equation holds for the σµ’s, and since all the terms in the above equation except
for s(λ1,...,λl,1) map to their σ-counterparts, it follows that s(λ1,...,λl,1) 7→ σ(λ1,...,λl,1). Thus we
have proved the result holds for (l + 1)-length partitions whose last part is 1.

We shall now successively increase the size of this (l + 1)-th part, by multiplying sλ with
hk. This will involve another induction step. So suppose we have proved the result for
(l + 1)-length partitions whose last part is ≤ k (so for what we showed above is the case
k = 1). We can increase the size of this last part to k + 1 as follows:

By Pieri’s rule, we have

s(λ1,λ2,...,λl)·h(k+1) =
∑

(s indexed by partitions with ≤ l+1 parts, with (l+1)-th part ≤ k)+s(λ1,...,λl,k+1)

A similar result holds for the σ’s, and as before, since all but one of the above terms map
to their σ-counterparts, this will prove that s(λ1,...,λl,k+1) 7→ σ(λ1,...,λl,k+1).

5. Proof of Pieri’s Rule

In this section we prove Pieri’s rule for the Schubert cycles σλ. Since we want to prove
a formula involving cup products in cohomology, and cup product is dual to tranversal
intersections, we will analyse intersections of Schubert cells. In general, two cells σλ and σλ′
(defined using the same flag) do not intersect transversely, so it will be convenient to use
different flags for different cells. The use of this is justified by the following theorem, which
says that the (co)homology class defined by σλ is independent of the flag used to define it.
For clarity, let’s denote the Schubert cell defined by partition λ and flag F by σλ(F ).

Theorem. (Flag Invariance) Let F, F ′ be two complete flags. Then [σλ(F )]∗ and [σλ(F ′)]
∗

represent the same classes in cohomology. The same holds for homology.

Proof. Note that the multiplication map GLm(C) × GLm(C) → GLm(C) gives a transitive
action of GLm(C) on complete flags, so we can find a g ∈ GLm(C) such that g(Fi) = F ′i for
all i. This action of GLm(C) is continuous, and since GLm(C) is connected, there is a path
P : [0, 1] → GLm(C) with P (0) = g and P (1) = Idm. This path gives a homotopy between
multiplication by g : GLm(C) → GLm(C) and Id : GLm(C) → GLm(C). Thus the induced

maps g∗, Id∗ on cohomology are the same. This implies that [σλ(F )] and [σλ(F ′)] represent
the same class in cohomology. Similar reasoning gives the analogous proof for homology. �

So this theorem justifies our use of σλ to denote cohomology classes, without reference to
the flag used to define the Schubert cell.

One particular kind of flag we’d like to work with is the reverse flag , defined as follows:
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Definition. Given a complete flag F•, such that e1, e2, . . . , em is a basis of Cm with Fi =
〈e1, e2, . . . , ei〉, it’s reverse flag F̃• is defined by F̃i = 〈em, em−1, . . . , em−i+1〉.

Example. Let n = r = 3, and λ = (3, 1, 1). Let F be the standard flag of C6, and F̃ the
corresponding reverse flag. We saw earlier that n + 1 − λ1 = 3 + 1 − 3 = 1, n + 2 − λ2 =
4, n+ 3− λ3 = 5. So an element in σλ(F ) looks like:1 0 0 0 0 0

0 ∗ ∗ 1 0 0
0 ∗ ∗ 0 1 0


If we took an element of σλ(F̃ ), and again wrote it out as a matrix whose rows are basis

vectors for the space (with the basis vectors written down in terms of the standard basis),
then that matrix in general would look like:0 1 0 ∗ ∗ 0

0 0 1 ∗ ∗ 0
0 0 0 0 0 1


Note that this matrix was obtained from the previous matrix by reversing its rows and

columns (the latter matrix is in fact in standard reduced row echelon form). In general,
given λ and F , we obtain the general matrix for σλ(F̃ ) by taking the general matrix for
σλ(F ) and reversing its rows and columns.

We now work towards understanding cup products of Schubert cycles.

Theorem. (Duality Theorem) For two partitions λ, µ, we have:

σλ ^ σµ =

{
1 λi + µr+1−i = n for all 1 ≤ i ≤ r

0 λi + µr+1−i > n for any i

Proof. Since cup product is dual to intersection, we’ll prove this by looking at the intersection

of the Schubert cells σλ(F ) and σµ(F̃ ), where F is the standard flag. If we use our method
of viewing elements in these cells as matrices, we know that the ith row of the matrix for
σλ(F ) has a 1 to the left or at the n + i − λi position, and 0’s to the right of it. The ith

row of something in σµ(F̃ ) has a 1 to the right or at the m− (n+ (r + 1− i)− µr+1−i) + 1
position (the change in indices corresponds to having reversed columns and rows), and 0’s
to the left of it. Thus for the two cells to have any intersection, the position of the 1’s in
σλ(F ) can’t be on the left of the 1’s in the corresponding rows of the σµ(F ′). That is, if we
have

n+i−λi < m−(n+(r+1−i)−µr+1−i)+1 ⇐⇒ n+i−λi < i+µr+1−i ⇐⇒ λi+µr+1−i > n

for any i, then the intersection has to be empty.
If λi + µr+1−i = n for all i, then this means that the 1’s are all in the same positions on

each row, and the rest of the entries of the matrix are 0. Thus the two cells intersect in
exactly one point. �

Definition. If λ, µ satisfy the condition above, they are called dual partitions, with µ
(resp, λ) denoted as λ̃ (resp, µ̃).
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Here’s how the duality theorem will be useful - Since the product σλ ^ σ(k) will have
dimension |λ|+ k in the cohomology ring, we know that:

σλ ^ σ(k) =
∑

|λ′|=|λ|+k

cλ′σλ′

for some integers cλ′ . We want to show that cλ′ = 1 if and only if λ ↑ λ′, and zero otherwise.
For this we will use the duality theorem. For a fixed µ, multiplying the above equation with
σµ̃ gives us

σµ̃ ^ σλ ^ σ(k) =
∑
λ′

cλ′(σµ̃ ^ σλ′) = cµ

Thus we need to show that σµ̃ ^ σλ ^ σ(k) = 1 if and only if λ ↑ µ and |µ| = |λ|+ k, and
0 otherwise. As before, we will study this product of cohomology classes using intersections
of Schubert cells, with suitably chosen flags.

For brevity and consistency with notation, we replace µ̃ in the above statement with µ.
So what we want to show is: if |µ̃| = |λ| + k, then σµ ^ σλ ^ σ(k) = 1 if and only if λ ↑ µ̃,
and 0 otherwise.

If |µ̃| = |λ|+ k, then the condition that λ ↑ µ̃ is equivalent to the following inequalities:

(1) n− λr ≥ µ1 ≥ n− λr−1 ≥ · · · ≥ n− λ1 ≥ µr ≥ 0

Our first goal will be to analyse the cup product σµ ^ σλ. As stated before, we’ll do this
by analysing intersection of Schubert cells, using the standard flag F for λ and its reverse
flag F̃ for µ. From the proof of the duality theorem, we know that for this intersection to
be non-empty, we must have λi + µr+1−i ≤ n for all 1 ≤ i ≤ r. We also saw that if we

write down an element of σλ(F ) as a matrix, then the nonzero entries of row i occur to

the left or at position n + i − λi, and for σµ(F̃ ) they occur to the right or at the position
m − (n + (r + 1 − i) − µr+1−i) + 1 = i + µr+1−i. Thus for a matrix in the intersection of
these two cells, all its non-zero entries in row i must fall between positions n + i − λi and
i+ µr+1−i.

Example. Take n = r = 3, λ = (3, 1, 1). Let k = 1, µ = (2, 1, 0). Then the general form for

an element in σλ(F ) is: ∗ 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0


and the general form for an element in σµ(F̃ ) is:∗ ∗ ∗ ∗ ∗ ∗0 0 ∗ ∗ ∗ ∗

0 0 0 0 ∗ ∗


and so an element in the intersection looks like:∗ 0 0 0 0 0

0 0 ∗ ∗ 0 0
0 0 0 0 ∗ 0


We fix some notation before continuing further analysis:
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Definition. (1) Let Ci denote the rowspan of row i of the above described intersection.
Thus Ci is the span of all ej such that

i+ µr+1−i ≤ j ≤ n+ i− λi

Let C = C1 + C2 + · · ·+ Cr.
(2) Let Ai = Fn+i−λi = Span(e1, e2, . . . , en+i−λi) for 1 ≤ i ≤ r. Set A0 = 0.

(3) LetBi = F̃n+i−µi = Span(em, em−1, . . . , em−(n+i−µi)+1) = Span(em, em−1, . . . , er+1−i+µi)
for 1 ≤ i ≤ r. Set B0 = 0.

Thus note that Ci = Ai ∩Br+1−i.

The rest of our analysis of σµ ^ σλ involves linear algebra arguments with the Ai, Bi, Ci,
which are broken down in several steps below.

Lemma. (1)
∑r

i=1 dimCi = r + k.
(2) C = C1 + C2 + · · ·+ Cr is a direct sum if and only if the inequalities 1 hold.

Proof. (1) From our description of Ci, it is clear that

dimCi = (n+ i− λi)− (i+ µr+1−i) + 1 = n+ 1− λi − µr+1−i

Thus

r∑
i=1

dimCi =
r∑
i=1

(n+1−λi−µr+1−i) = rn+r−|λ|−|µ| = rn+r−|λ|−(rn−|λ|−k) = r+k,

as desired.
(2) This is again clear from our description of Ci. Since Ci is spanned by all ej such that

i+ µr+1−i ≤ j ≤ n+ i− λi, the only way for the Ci to be linearly independent is if

i+ µr+1−i ≤ n+ i− λi < (i+ 1) + µr−i

for all i, which reduces to the inequalities

µr+1−i ≤ n− λi ≤ µr−i

for all i, which is precisely what 1 says.
�

Lemma. C =
⋂r
i=0(Ai +Br−i).

Proof. First note that A0 ⊂ A1 ⊂ · · · ⊂ Ar and B0 ⊂ B1 ⊂ · · · ⊂ Br. We shall use the fact
that for linear subspaces W,X, Y ⊂ Cm with W ⊂ Y , we have (W +X)∩Y = W + (X ∩Y ).
Applying this twice to the case where W ⊂ Y, Z ⊂ X, we get (W + X) ∩ (Y + Z) =
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W + (X ∩ (Y + Z)) = W + (X ∩ Y ) + Z. Applying this r times gives us:
r⋂
i=0

(Ai +Br−i) = (A0 +Br) ∩ (A1 +Br−1) ∩ · · · ∩ (Ar +B0)

= (A0 + A1 ∩Br +Br−1) ∩ (A2 +Br−2) ∩ · · · ∩ (Ar +B0)

= (A0 + A1 ∩Br + A2 ∩Br−1 +Br−2) ∩ (A3 +Br−3) ∩ · · · ∩ (Ar +B0)

= . . .

= A0 + A1 ∩Br + A2 ∩Br−1 + · · ·+ Ar ∩B1 +B0

=
r∑
i=1

Ai ∩Br+1−i =
r∑
i=1

Ci = C,

as desired.
�

Lemma. (1) If V ∈ σλ(F ) ∩ σµ(F̃ ), then V ⊂ C.
(2) If in addition C1, C2, . . . , Cr are linearly independent, then dim(V ∩Ci) = 1 for all i,

and V = (V ∩ C1)⊕ (V ∩ C2)⊕ · · · ⊕ (V ∩ Cr).

Proof. (1) By the previous lemma, it is enough to show that V ⊂ Ai + Br−i for all i.

First suppose that Ai ∩ Br−i = 0. V ∈ σλ(F ) implies that dim(V ∩ Ai) ≥ i, and

V ∈ σµ(F̃ ) implies that dim(V ∩ Br−i) ≥ r − i. Since dimV = r and Ai ∩ Br−i = 0,
this implies that dim(V ∩ (Ai +Br−i)) = r, i.e. V ⊂ Ai +Br−i.
If Ai ∩ Br−i 6= 0, then this means that there is some ej such that m − i − µr−i ≤
j ≤ n+ i− λi, and so m− i− µr−i ≤ n+ i− λi. Since Ai is spanned by all ej with
j ≤ n + i − λi and Br−i is spanned by those with m − i − µr−i ≤ j, it follows that
Ai +Br−i = Cm. Then certainly V ⊂ Ai +Br−i.

(2) We know in this case that Ci = Ai∩Br+1−i and so, following a similar reasoning as in
the proof of part(1), we have Ai +Br+1−i = Cm. Thus, (V ∩Ai) + (V ∩Br−i+1) = V ,
and (V ∩ Ai) ∩ (V ∩ Br+1−i) = V ∩ Ci. Now, the condition on V implies that
dim(V ∩Ai) ≥ i and dim(V ∩Br+1−i) ≥ r+ 1− i, and by a dimension count we have
dim(V ∩ Ci) ≥ (i) + (r + 1− i)− (r) = 1.
If the Ci are linearly independent, then V contains the direct sum of the V ∩ Ci.
Since each of these has dimension ≥ 1 and V itself has dimension r, it follows that
dim(V ∩ Ci) = 1 for all i and that V must be exactly equal to the direct sum of the
V ∩ Ci.

�

We eventually want to understand the cup product σµ ^ σλ ^ σ(k). We need to choose

a flag L• using which we’ll intersect the Schubert cell σ(k)(L•) with σµ(F̃ ) ∩ σλ(F ).
Note that since the partition (k) has length 1, we have

σ(k)(L) = {X ∈ Grr(Cm) : dim(X ∩ Ln+1−k) ≥ 1},
so this cell only depends on the n + 1 − k dimensional subspace Ln+1−k. For brevity let’s

replace Ln+1−k with L, and define σ(L) := {X : dim(X ∩ L) ≥ 1}. We’ll pick the subspace
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L later, as per what makes our argument convenient.

We want to show that σµ(F̃ )∩σλ(F )∩σ(L) has exactly one element when the inequalities
1 hold, and an empty intersection otherwise.
If 1 fails to hold, then we know that C = C1 + C2 + · · · + Cr is not a direct sum, and so
dimC ≤ (

∑r
i=1 dimCi)− 1 = r+ k− 1. Therefore a generic n+ 1− k-dimensional subspace

L will only intersect C at the origin. We know that any V ∈ σµ(F̃ ) ∩ σλ(F ) is contained in

C, so V will only intersect L at the origin. Thus dim(V ∩ L) = 0, and so V 6∈ σ(L). Thus
the intersection of the three Schubert cells is empty.

If 1 does hold, then we know that C = C1 ⊕ C2 ⊕ · · · ⊕ Cr has dimension r + k, and so
a generic L intersects C in a line of the form C · v, where v = u1 ⊕ u2 ⊕ · · · ⊕ ur, ui ∈ Ci.
Since we have freedom over choosing L, we can also assume that ui 6= 0. The condition that
dim(V ∩L) ≥ 1 then forces V to contain v. Further, since V = V ∩C1⊕V ∩C2⊕· · ·⊕V ∩Cr,
this implies that ui ∈ V , and so V = 〈u1, u2, . . . , ur〉. Thus, the three Schubert cells meet
only at the point 〈u1, u2, . . . , ur〉. This completes the proof.
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